47 lines
		
	
	
		
			809 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			47 lines
		
	
	
		
			809 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f4451000cf542c50ff57 | ||
|  | title: 'Problem 216: Investigating the primality of numbers of the form 2n2-1' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 301858 | ||
|  | dashedName: problem-216-investigating-the-primality-of-numbers-of-the-form-2n2-1 | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | Consider numbers t(n) of the form t(n) = 2n2-1 with n > 1. | ||
|  | 
 | ||
|  | The first such numbers are 7, 17, 31, 49, 71, 97, 127 and 161. | ||
|  | 
 | ||
|  | It turns out that only 49 = 7\*7 and 161 = 7\*23 are not prime. | ||
|  | 
 | ||
|  | For n ≤ 10000 there are 2202 numbers t(n) that are prime. | ||
|  | 
 | ||
|  | How many numbers t(n) are prime for n ≤ 50,000,000 ? | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `euler216()` should return 5437849. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(euler216(), 5437849); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function euler216() { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | euler216(); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | // solution required | ||
|  | ``` |