45 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			45 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f4831000cf542c50ff95 | ||
|  | title: 'Problem 278: Linear Combinations of Semiprimes' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 301928 | ||
|  | dashedName: problem-278-linear-combinations-of-semiprimes | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | Given the values of integers 1 < a1 < a2 <... < an, consider the linear combination q1a1 + q2a2 + ... + qnan = b, using only integer values qk ≥ 0. | ||
|  | 
 | ||
|  | Note that for a given set of ak, it may be that not all values of b are possible. For instance, if a1 = 5 and a2 = 7, there are no q1 ≥ 0 and q2 ≥ 0 such that b could be 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18 or 23. | ||
|  | 
 | ||
|  | In fact, 23 is the largest impossible value of b for a1 = 5 and a2 = 7. We therefore call f(5, 7) = 23. Similarly, it can be shown that f(6, 10, 15)=29 and f(14, 22, 77) = 195. | ||
|  | 
 | ||
|  | Find ∑ f(p*q,p*r,q\*r), where p, q and r are prime numbers and p < q < r < 5000. | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `euler278()` should return 1228215747273908500. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(euler278(), 1228215747273908500); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function euler278() { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | euler278(); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | // solution required | ||
|  | ``` |