69 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			69 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f4ab1000cf542c50ffbd | ||
|  | title: 'Problem 318: 2011 nines' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 301974 | ||
|  | dashedName: problem-318-2011-nines | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | Consider the real number √2+√3. | ||
|  | 
 | ||
|  | When we calculate the even powers of √2+√3 | ||
|  | 
 | ||
|  | we get: | ||
|  | 
 | ||
|  | (√2+√3)2 = 9.898979485566356... | ||
|  | 
 | ||
|  | (√2+√3)4 = 97.98979485566356... | ||
|  | 
 | ||
|  | (√2+√3)6 = 969.998969071069263... | ||
|  | 
 | ||
|  | (√2+√3)8 = 9601.99989585502907... | ||
|  | 
 | ||
|  | (√2+√3)10 = 95049.999989479221... | ||
|  | 
 | ||
|  | (√2+√3)12 = 940897.9999989371855... | ||
|  | 
 | ||
|  | (√2+√3)14 = 9313929.99999989263... | ||
|  | 
 | ||
|  | (√2+√3)16 = 92198401.99999998915... | ||
|  | 
 | ||
|  | It looks like that the number of consecutive nines at the beginning of the fractional part of these powers is non-decreasing. In fact it can be proven that the fractional part of (√2+√3)2n approaches 1 for large n. | ||
|  | 
 | ||
|  | Consider all real numbers of the form √p+√q with p and q positive integers and p<q, such that the fractional part of (√p+√q)2n approaches 1 for large n. | ||
|  | 
 | ||
|  | Let C(p,q,n) be the number of consecutive nines at the beginning of the fractional part of (√p+√q)2n. | ||
|  | 
 | ||
|  | Let N(p,q) be the minimal value of n such that C(p,q,n) ≥ 2011. | ||
|  | 
 | ||
|  | Find ∑N(p,q) for p+q ≤ 2011. | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `euler318()` should return 709313889. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(euler318(), 709313889); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function euler318() { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | euler318(); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | // solution required | ||
|  | ``` |