55 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			55 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						|||
| 
								 | 
							
								id: 5900f3f51000cf542c50ff08
							 | 
						|||
| 
								 | 
							
								title: 'Problem 137: Fibonacci golden nuggets'
							 | 
						|||
| 
								 | 
							
								challengeType: 5
							 | 
						|||
| 
								 | 
							
								forumTopicId: 301765
							 | 
						|||
| 
								 | 
							
								dashedName: problem-137-fibonacci-golden-nuggets
							 | 
						|||
| 
								 | 
							
								---
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# --description--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								Consider the infinite polynomial series AF(x) = xF1 + x2F2 + x3F3 + ..., where Fk is the kth term in the Fibonacci sequence: 1, 1, 2, 3, 5, 8, ... ; that is, Fk = Fk−1 + Fk−2, F1 = 1 and F2 = 1.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								For this problem we shall be interested in values of x for which AF(x) is a positive integer.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								Surprisingly AF(1/2)
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								=
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								(1/2).1 + (1/2)2.1 + (1/2)3.2 + (1/2)4.3 + (1/2)5.5 + ...
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								= 1/2 + 1/4 + 2/8 + 3/16 + 5/32 + ...
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								= 2 The corresponding values of x for the first five natural numbers are shown below.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								xAF(x) √2−11 1/22 (√13−2)/33 (√89−5)/84 (√34−3)/55
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								We shall call AF(x) a golden nugget if x is rational, because they become increasingly rarer; for example, the 10th golden nugget is 74049690. Find the 15th golden nugget.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# --hints--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								`euler137()` should return 1120149658760.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```js
							 | 
						|||
| 
								 | 
							
								assert.strictEqual(euler137(), 1120149658760);
							 | 
						|||
| 
								 | 
							
								```
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# --seed--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								## --seed-contents--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```js
							 | 
						|||
| 
								 | 
							
								function euler137() {
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								  return true;
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								euler137();
							 | 
						|||
| 
								 | 
							
								```
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# --solutions--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```js
							 | 
						|||
| 
								 | 
							
								// solution required
							 | 
						|||
| 
								 | 
							
								```
							 |