58 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			58 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						|||
| 
								 | 
							
								id: 5900f4031000cf542c50ff15
							 | 
						|||
| 
								 | 
							
								title: >-
							 | 
						|||
| 
								 | 
							
								  Problem 150: Searching a triangular array for a sub-triangle having minimum-sum
							 | 
						|||
| 
								 | 
							
								challengeType: 5
							 | 
						|||
| 
								 | 
							
								forumTopicId: 301781
							 | 
						|||
| 
								 | 
							
								dashedName: problem-150-searching-a-triangular-array-for-a-sub-triangle-having-minimum-sum
							 | 
						|||
| 
								 | 
							
								---
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# --description--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								In a triangular array of positive and negative integers, we wish to find a sub-triangle such that the sum of the numbers it contains is the smallest possible.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								In the example below, it can be easily verified that the marked triangle satisfies this condition having a sum of −42.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								We wish to make such a triangular array with one thousand rows, so we generate 500500 pseudo-random numbers sk in the range ±219, using a type of random number generator (known as a Linear Congruential Generator) as follows: t := 0
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								for k = 1 up to k = 500500:
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								t := (615949\*t + 797807) modulo 220 sk := t−219 Thus: s1 = 273519, s2 = −153582, s3 = 450905 etc Our triangular array is then formed using the pseudo-random numbers thus:
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								s1 s2 s3 s4 s5 s6
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								s7 s8 s9 s10 ...
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								Sub-triangles can start at any element of the array and extend down as far as we like (taking-in the two elements directly below it from the next row, the three elements directly below from the row after that, and so on).
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								The "sum of a sub-triangle" is defined as the sum of all the elements it contains.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								Find the smallest possible sub-triangle sum.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# --hints--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								`euler150()` should return -271248680.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```js
							 | 
						|||
| 
								 | 
							
								assert.strictEqual(euler150(), -271248680);
							 | 
						|||
| 
								 | 
							
								```
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# --seed--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								## --seed-contents--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```js
							 | 
						|||
| 
								 | 
							
								function euler150() {
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								  return true;
							 | 
						|||
| 
								 | 
							
								}
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								euler150();
							 | 
						|||
| 
								 | 
							
								```
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								# --solutions--
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								```js
							 | 
						|||
| 
								 | 
							
								// solution required
							 | 
						|||
| 
								 | 
							
								```
							 |