90 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			90 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								id: 5900f3a11000cf542c50feb4
							 | 
						||
| 
								 | 
							
								title: 'Problem 53: Combinatoric selections'
							 | 
						||
| 
								 | 
							
								challengeType: 5
							 | 
						||
| 
								 | 
							
								forumTopicId: 302164
							 | 
						||
| 
								 | 
							
								dashedName: problem-53-combinatoric-selections
							 | 
						||
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --description--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								There are exactly ten ways of selecting three from five, 12345:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<div style='text-align: center;'>123, 124, 125, 134, 135, 145, 234, 235, 245, and 345</div>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								In combinatorics, we use the notation, $\\displaystyle \\binom 5 3 = 10$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								In general, $\\displaystyle \\binom n r = \\dfrac{n!}{r!(n-r)!}$, where $r \\le n$, $n! = n \\times (n-1) \\times ... \\times 3 \\times 2 \\times 1$, and $0! = 1$.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								It is not until $n = 23$, that a value exceeds one-million: $\\displaystyle \\binom {23} {10} = 1144066$.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								How many, not necessarily distinct, values of $\\displaystyle \\binom n r$ for $1 \\le n \\le 100$, are greater than one-million?
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --hints--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`combinatoricSelections(1000)` should return a number.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert(typeof combinatoricSelections(1000) === 'number');
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`combinatoricSelections(1000)` should return 4626.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert.strictEqual(combinatoricSelections(1000), 4626);
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`combinatoricSelections(10000)` should return 4431.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert.strictEqual(combinatoricSelections(10000), 4431);
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`combinatoricSelections(100000)` should return 4255.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert.strictEqual(combinatoricSelections(100000), 4255);
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`combinatoricSelections(1000000)` should return 4075.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert.strictEqual(combinatoricSelections(1000000), 4075);
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --seed--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								## --seed-contents--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								function combinatoricSelections(limit) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return 1;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								combinatoricSelections(1000000);
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --solutions--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								function combinatoricSelections(limit) {
							 | 
						||
| 
								 | 
							
								    const factorial = n =>
							 | 
						||
| 
								 | 
							
								        Array.apply(null, { length: n })
							 | 
						||
| 
								 | 
							
								            .map((_, i) => i + 1)
							 | 
						||
| 
								 | 
							
								            .reduce((p, c) => p * c, 1);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    let result = 0;
							 | 
						||
| 
								 | 
							
								    const nMax = 100;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    for (let n = 1; n <= nMax; n++) {
							 | 
						||
| 
								 | 
							
								        for (let r = 0; r <= n; r++) {
							 | 
						||
| 
								 | 
							
								            if (factorial(n) / (factorial(r) * factorial(n - r)) >= limit)
							 | 
						||
| 
								 | 
							
								                result++;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return result;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								```
							 |