88 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			88 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | |||
|  | id: 5a23c84252665b21eecc7edf | |||
|  | title: Least common multiple | |||
|  | challengeType: 5 | |||
|  | forumTopicId: 302301 | |||
|  | dashedName: least-common-multiple | |||
|  | --- | |||
|  | 
 | |||
|  | # --description--
 | |||
|  | 
 | |||
|  | The least common multiple of 12 and 18 is 36, because 12 is a factor (12 × 3 = 36), and 18 is a factor (18 × 2 = 36), and there is no positive integer less than 36 that has both factors. As a special case, if either *m* or *n* is zero, then the least common multiple is zero. One way to calculate the least common multiple is to iterate all the multiples of *m*, until you find one that is also a multiple of *n*. If you already have *gcd* for [greatest common divisor](https://rosettacode.org/wiki/greatest common divisor), then this formula calculates *lcm*. ( \\operatorname{lcm}(m, n) = \\frac{|m \\times n|}{\\operatorname{gcd}(m, n)} ) | |||
|  | 
 | |||
|  | # --instructions--
 | |||
|  | 
 | |||
|  | Compute the least common multiple of an array of integers. Given *m* and *n*, the least common multiple is the smallest positive integer that has both *m* and *n* as factors. | |||
|  | 
 | |||
|  | # --hints--
 | |||
|  | 
 | |||
|  | `LCM` should be a function. | |||
|  | 
 | |||
|  | ```js | |||
|  | assert(typeof LCM == 'function'); | |||
|  | ``` | |||
|  | 
 | |||
|  | `LCM([2, 4, 8])` should return a number. | |||
|  | 
 | |||
|  | ```js | |||
|  | assert(typeof LCM([2, 4, 8]) == 'number'); | |||
|  | ``` | |||
|  | 
 | |||
|  | `LCM([2, 4, 8])` should return `8`. | |||
|  | 
 | |||
|  | ```js | |||
|  | assert.equal(LCM([2, 4, 8]), 8); | |||
|  | ``` | |||
|  | 
 | |||
|  | `LCM([4, 8, 12])` should return `24`. | |||
|  | 
 | |||
|  | ```js | |||
|  | assert.equal(LCM([4, 8, 12]), 24); | |||
|  | ``` | |||
|  | 
 | |||
|  | `LCM([3, 4, 5, 12, 40])` should return `120`. | |||
|  | 
 | |||
|  | ```js | |||
|  | assert.equal(LCM([3, 4, 5, 12, 40]), 120); | |||
|  | ``` | |||
|  | 
 | |||
|  | `LCM([11, 33, 90])` should return `990`. | |||
|  | 
 | |||
|  | ```js | |||
|  | assert.equal(LCM([11, 33, 90]), 990); | |||
|  | ``` | |||
|  | 
 | |||
|  | `LCM([-50, 25, -45, -18, 90, 447])` should return `67050`. | |||
|  | 
 | |||
|  | ```js | |||
|  | assert.equal(LCM([-50, 25, -45, -18, 90, 447]), 67050); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --seed--
 | |||
|  | 
 | |||
|  | ## --seed-contents--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | function LCM(A) { | |||
|  | 
 | |||
|  | } | |||
|  | ``` | |||
|  | 
 | |||
|  | # --solutions--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | function LCM(A) { | |||
|  |   var n = A.length, | |||
|  |     a = Math.abs(A[0]); | |||
|  |   for (var i = 1; i < n; i++) { | |||
|  |     var b = Math.abs(A[i]), | |||
|  |       c = a; | |||
|  |     while (a && b) { | |||
|  |       a > b ? (a %= b) : (b %= a); | |||
|  |     } | |||
|  |     a = Math.abs(c * A[i]) / (a + b); | |||
|  |   } | |||
|  |   return a; | |||
|  | } | |||
|  | ``` |