56 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			56 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | |||
|  | id: 5900f3d21000cf542c50fee4 | |||
|  | challengeType: 5 | |||
|  | title: 'Problem 101: Optimum polynomial' | |||
|  | videoUrl: '' | |||
|  | localeTitle: 问题101:最佳多项式 | |||
|  | --- | |||
|  | 
 | |||
|  | ## Description
 | |||
|  | <section id="description">如果我们被给出序列的前k个项,则不可能肯定地说下一个项的值,因为存在无限多个可以对序列建模的多项式函数。举个例子,让我们考虑一下立方体数字的顺序。这由生成函数定义,un = n3:1,8,27,64,125,216 ......假设我们只给出了该序列的前两个项。根据“简单就是最好”的原则,我们应该假设一个线性关系,并预测下一个项为15(公共差异7)。即使我们被提出前三个术语,按照相同的简单原则,也应假设二次关系。我们将OP(k,n)定义为序列的前k个项的最佳多项式生成函数的第n项。应该清楚的是,OP(k,n)将准确地生成n≤k的序列项,并且可能第一个不正确的项(FIT)将是OP(k,k + 1);在这种情况下,我们将其称为坏OP(BOP)。作为一个基础,如果我们只给出第一个序列项,那么假设恒定是最明智的;也就是说,对于n≥2,OP(1,n)= u1。因此,我们获得了立方序列的以下OP: <p> OP(1,n)= 11 1,1,1,1 ...... OP(2,n)= 7n-6 1,8,15,...... OP(3,n)= 6n2-11n + 6 1,8,27,58,... OP(4,n)= n3 1,8,27,64,125,...... </p><p>显然,对于k≥4,不存在BOP。通过考虑BOP产生的FIT之和(以红色表示),我们得到1 + 15 + 58 = 74.考虑下面的十度多项式生成函数:un = 1  -  n + n2  -  n3 + n4  -  n5 + n6  -  n7 + n8  -  n9 + n10求BOP的FIT之和。 </p></section> | |||
|  | 
 | |||
|  | ## Instructions
 | |||
|  | <section id="instructions"> | |||
|  | </section> | |||
|  | 
 | |||
|  | ## Tests
 | |||
|  | <section id='tests'> | |||
|  | 
 | |||
|  | ```yml | |||
|  | tests: | |||
|  |   - text: <code>euler101()</code>应该返回37076114526。 | |||
|  |     testString: 'assert.strictEqual(euler101(), 37076114526, "<code>euler101()</code> should return 37076114526.");' | |||
|  | 
 | |||
|  | ``` | |||
|  | 
 | |||
|  | </section> | |||
|  | 
 | |||
|  | ## Challenge Seed
 | |||
|  | <section id='challengeSeed'> | |||
|  | 
 | |||
|  | <div id='js-seed'> | |||
|  | 
 | |||
|  | ```js | |||
|  | function euler101() { | |||
|  |   // Good luck! | |||
|  |   return true; | |||
|  | } | |||
|  | 
 | |||
|  | euler101(); | |||
|  | 
 | |||
|  | ``` | |||
|  | 
 | |||
|  | </div> | |||
|  | 
 | |||
|  | 
 | |||
|  | 
 | |||
|  | </section> | |||
|  | 
 | |||
|  | ## Solution
 | |||
|  | <section id='solution'> | |||
|  | 
 | |||
|  | ```js | |||
|  | // solution required | |||
|  | ``` | |||
|  | </section> |