140 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			140 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f3781000cf542c50fe8b | ||
|  | title: 'Problem 12: Highly divisible triangular number' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 301746 | ||
|  | dashedName: problem-12-highly-divisible-triangular-number | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: | ||
|  | 
 | ||
|  | <div style='text-align: center;'>1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...</div> | ||
|  | 
 | ||
|  | Let us list the factors of the first seven triangle numbers: | ||
|  | 
 | ||
|  | <div style='padding-left: 4em;'><b>1:</b> 1</div> | ||
|  | <div style='padding-left: 4em;'><b>3:</b> 1, 3</div> | ||
|  | <div style='padding-left: 4em;'><b>6:</b> 1, 2, 3, 6</div> | ||
|  | <div style='padding-left: 4em;'><b>10:</b> 1, 2, 5, 10</div> | ||
|  | <div style='padding-left: 4em;'><b>15:</b> 1, 3, 5, 15</div> | ||
|  | <div style='padding-left: 4em;'><b>21:</b> 1, 3, 7, 21</div> | ||
|  | <div style='padding-left: 4em;'><b>28:</b> 1, 2, 4, 7, 14, 28</div> | ||
|  | 
 | ||
|  | We can see that 28 is the first triangle number to have over five divisors. | ||
|  | 
 | ||
|  | What is the value of the first triangle number to have over `n` divisors? | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `divisibleTriangleNumber(5)` should return a number. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert(typeof divisibleTriangleNumber(5) === 'number'); | ||
|  | ``` | ||
|  | 
 | ||
|  | `divisibleTriangleNumber(5)` should return 28. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(divisibleTriangleNumber(5), 28); | ||
|  | ``` | ||
|  | 
 | ||
|  | `divisibleTriangleNumber(23)` should return 630. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(divisibleTriangleNumber(23), 630); | ||
|  | ``` | ||
|  | 
 | ||
|  | `divisibleTriangleNumber(167)` should return 1385280. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(divisibleTriangleNumber(167), 1385280); | ||
|  | ``` | ||
|  | 
 | ||
|  | `divisibleTriangleNumber(374)` should return 17907120. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(divisibleTriangleNumber(374), 17907120); | ||
|  | ``` | ||
|  | 
 | ||
|  | `divisibleTriangleNumber(500)` should return 76576500. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(divisibleTriangleNumber(500), 76576500); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function divisibleTriangleNumber(n) { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | divisibleTriangleNumber(500); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function divisibleTriangleNumber(n) { | ||
|  |   if (n === 1) return 3; | ||
|  |   let counter = 1; | ||
|  |   let triangleNumber = counter++; | ||
|  | 
 | ||
|  | 
 | ||
|  |  while (noOfFactors(triangleNumber) < n) { | ||
|  |    triangleNumber += counter++; | ||
|  |  } | ||
|  | return triangleNumber; | ||
|  | } | ||
|  | 
 | ||
|  | function noOfFactors(num) { | ||
|  |   const primeFactors = getPrimeFactors(num); | ||
|  |   let prod = 1; | ||
|  |   for(let p in primeFactors) { | ||
|  |     prod *= (primeFactors[p] + 1) | ||
|  |   } | ||
|  |   return prod; | ||
|  | } | ||
|  | 
 | ||
|  | function getPrimeFactors(num) { | ||
|  |   let n = num; | ||
|  |   let primes = {}; | ||
|  | 
 | ||
|  |   let p = 2; | ||
|  |   let sqrt = Math.sqrt(num); | ||
|  | 
 | ||
|  |   function checkAndUpdate(inc) { | ||
|  |     if (n % p === 0) { | ||
|  |       const curr = primes[p]; | ||
|  |       if (curr) { | ||
|  |         primes[p]++ | ||
|  |       } else { | ||
|  |         primes[p] = 1; | ||
|  |       } | ||
|  |       n /= p; | ||
|  |     } else { | ||
|  |       p += inc; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   while(p === 2 && p <= n) { | ||
|  |     checkAndUpdate(1); | ||
|  |   } | ||
|  | 
 | ||
|  |   while (p <= n && p <= sqrt) { | ||
|  |     checkAndUpdate(2); | ||
|  |   } | ||
|  |   if(Object.keys(primes).length === 0) { | ||
|  |     primes[num] = 1; | ||
|  |   } else if(n !== 1) { | ||
|  |     primes[n] = 1; | ||
|  |   } | ||
|  |   return primes; | ||
|  | } | ||
|  | ``` |