47 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			47 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | |||
|  | id: 5900f3fa1000cf542c50ff0c | |||
|  | title: 'Problem 140: Modified Fibonacci golden nuggets' | |||
|  | challengeType: 5 | |||
|  | forumTopicId: 301769 | |||
|  | dashedName: problem-140-modified-fibonacci-golden-nuggets | |||
|  | --- | |||
|  | 
 | |||
|  | # --description--
 | |||
|  | 
 | |||
|  | Consider the infinite polynomial series AG(x) = xG1 + x2G2 + x3G3 + ..., where Gk is the kth term of the second order recurrence relation Gk = Gk−1 + Gk−2, G1 = 1 and G2 = 4; that is, 1, 4, 5, 9, 14, 23, ... . | |||
|  | 
 | |||
|  | For this problem we shall be concerned with values of x for which AG(x) is a positive integer. | |||
|  | 
 | |||
|  | The corresponding values of x for the first five natural numbers are shown below. | |||
|  | 
 | |||
|  | xAG(x) (√5−1)/41 2/52 (√22−2)/63 (√137−5)/144 1/25 | |||
|  | 
 | |||
|  | We shall call AG(x) a golden nugget if x is rational, because they become increasingly rarer; for example, the 20th golden nugget is 211345365. Find the sum of the first thirty golden nuggets. | |||
|  | 
 | |||
|  | # --hints--
 | |||
|  | 
 | |||
|  | `euler140()` should return 5673835352990. | |||
|  | 
 | |||
|  | ```js | |||
|  | assert.strictEqual(euler140(), 5673835352990); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --seed--
 | |||
|  | 
 | |||
|  | ## --seed-contents--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | function euler140() { | |||
|  | 
 | |||
|  |   return true; | |||
|  | } | |||
|  | 
 | |||
|  | euler140(); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --solutions--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | // solution required | |||
|  | ``` |