45 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			45 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f5431000cf542c510056 | ||
|  | title: 'Problem 471: Triangle inscribed in ellipse' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 302148 | ||
|  | dashedName: problem-471-triangle-inscribed-in-ellipse | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | The triangle ΔABC is inscribed in an ellipse with equation $\\frac {x^2} {a^2} + \\frac {y^2} {b^2} = 1$, 0 < 2b < a, a and b integers. | ||
|  | 
 | ||
|  | Let r(a,b) be the radius of the incircle of ΔABC when the incircle has center (2b, 0) and A has coordinates $\\left( \\frac a 2, \\frac {\\sqrt 3} 2 b\\right)$. | ||
|  | 
 | ||
|  | For example, r(3,1) = ½, r(6,2) = 1, r(12,3) = 2. | ||
|  | 
 | ||
|  | Let $G(n) = \\sum*{a=3}^n \\sum*{b=1}^{\\lfloor \\frac {a - 1} 2 \\rfloor} r(a, b)$ You are given G(10) = 20.59722222, G(100) = 19223.60980 (rounded to 10 significant digits). Find G(1011). Give your answer in scientific notation rounded to 10 significant digits. Use a lowercase e to separate mantissa and exponent. For G(10) the answer would have been 2.059722222e1. | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `euler471()` should return 1.895093981e+31. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(euler471(), 1.895093981e31); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function euler471() { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | euler471(); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | // solution required | ||
|  | ``` |