88 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			88 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 594810f028c0303b75339ad5 | ||
|  | title: Y combinator | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 302345 | ||
|  | dashedName: y-combinator | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | In strict [functional programming](https://en.wikipedia.org/wiki/Functional programming "wp: functional programming") and the [lambda calculus](https://en.wikipedia.org/wiki/lambda calculus "wp: lambda calculus"), functions (lambda expressions) don't have state and are only allowed to refer to arguments of enclosing functions. This rules out the usual definition of a recursive function wherein a function is associated with the state of a variable and this variable's state is used in the body of the function. The [Y combinator](https://mvanier.livejournal.com/2897.html) is itself a stateless function that, when applied to another stateless function, returns a recursive version of the function. The Y combinator is the simplest of the class of such functions, called [fixed-point combinators](https://en.wikipedia.org/wiki/Fixed-point combinator "wp: fixed-point combinator"). | ||
|  | 
 | ||
|  | # --instructions--
 | ||
|  | 
 | ||
|  | Define the stateless Y combinator function and use it to compute [factorial](https://en.wikipedia.org/wiki/Factorial "wp: factorial"). The `factorial(N)` function is already given to you. **See also:** | ||
|  | 
 | ||
|  | <ul> | ||
|  |   <li><a href="https://vimeo.com/45140590" target="_blank">Jim Weirich: Adventures in Functional Programming</a>.</li> | ||
|  | </ul> | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | Y should return a function. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.equal(typeof Y((f) => (n) => n), 'function'); | ||
|  | ``` | ||
|  | 
 | ||
|  | factorial(1) should return 1. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.equal(factorial(1), 1); | ||
|  | ``` | ||
|  | 
 | ||
|  | factorial(2) should return 2. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.equal(factorial(2), 2); | ||
|  | ``` | ||
|  | 
 | ||
|  | factorial(3) should return 6. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.equal(factorial(3), 6); | ||
|  | ``` | ||
|  | 
 | ||
|  | factorial(4) should return 24. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.equal(factorial(4), 24); | ||
|  | ``` | ||
|  | 
 | ||
|  | factorial(10) should return 3628800. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.equal(factorial(10), 3628800); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --after-user-code--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | var factorial = Y(f => n => (n > 1 ? n * f(n - 1) : 1)); | ||
|  | ``` | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function Y(f) { | ||
|  |   return function() { | ||
|  | 
 | ||
|  |   }; | ||
|  | } | ||
|  | 
 | ||
|  | var factorial = Y(function(f) { | ||
|  |   return function (n) { | ||
|  |     return n > 1 ? n * f(n - 1) : 1; | ||
|  |   }; | ||
|  | }); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | var Y = f => (x => x(x))(y => f(x => y(y)(x))); | ||
|  | ``` |