| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | --- | 
					
						
							|  |  |  | id: 5900f5131000cf542c510025 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | title: '問題 422: 双曲線上の点列' | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | challengeType: 5 | 
					
						
							|  |  |  | forumTopicId: 302092 | 
					
						
							|  |  |  | dashedName: problem-422-sequence-of-points-on-a-hyperbola | 
					
						
							|  |  |  | --- | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # --description--
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | 式 $12x^2 + 7xy - 12y^2 = 625$ で定義される双曲線を $H$ とします。 | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | 次に、点 (7, 1) を $X$ と定義します。 $X$ が $H$ 上にあることが分かります。 | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | ここで、$H, \\{P_i : i ≥ 1\\}$ の点列を次のように定義します。 | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | - $P_1 = (13, \frac{61}{4})$ | 
					
						
							|  |  |  | - $P_2 = (\frac{-43}{6}, -4)$ | 
					
						
							|  |  |  | - $i > 2$ のとき、$P_i$ は、線 $P_iP_{i - 1}$ が線 $P_{i - 2}X$ と平行になるような点のうち $P_{i - 1}$ ではない方の、$H$ 上の一意の点である。 $P_i$ を明確に定義できること、および、それらの座標が常に有理数であることを示せる。 | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | <img class="img-responsive center-block" alt="点 $P_1$ から点 $P_6$ までの決め方を示すアニメーション" src="https://cdn.freecodecamp.org/curriculum/project-euler/sequence-of-points-on-a-hyperbola.gif" style="background-color: white; padding: 10px;" /> | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | $P_3 = (\frac{-19}{2}, \frac{-229}{24})$, $P_4 = (\frac{1267}{144}, \frac{-37}{12})$, $P_7 = (\frac{17\\,194\\,218\\,091}{143\\,327\\,232}, \frac{274\\,748\\,766\\,781}{1\\,719\\,926\\,784})$ が与えられます。 | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | $n = {11}^{14}$ のとき、$P_n$ を次の形式で求めなさい: $P_n = (\frac{a}{b}, \frac{c}{d})$ が既約分数かつ分母が正の数である場合、回答は $(a + b + c + d)\bmod 1\\,000\\,000\\,007$ となります。 | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | $n = 7$ のとき、回答は $806\\,236\\,837$ です。 | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | 
 | 
					
						
							|  |  |  | # --hints--
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | `sequenceOfPointsOnHyperbola()` は `92060460` を返す必要があります。 | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | 
 | 
					
						
							|  |  |  | ```js | 
					
						
							|  |  |  | assert.strictEqual(sequenceOfPointsOnHyperbola(), 92060460); | 
					
						
							|  |  |  | ``` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # --seed--
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ## --seed-contents--
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ```js | 
					
						
							|  |  |  | function sequenceOfPointsOnHyperbola() { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return true; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | sequenceOfPointsOnHyperbola(); | 
					
						
							|  |  |  | ``` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # --solutions--
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ```js | 
					
						
							|  |  |  | // solution required | 
					
						
							|  |  |  | ``` |