57 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			57 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								id: 5900f4931000cf542c50ffa6
							 | 
						||
| 
								 | 
							
								title: 'Problem 295: Lenticular holes'
							 | 
						||
| 
								 | 
							
								challengeType: 5
							 | 
						||
| 
								 | 
							
								forumTopicId: 301947
							 | 
						||
| 
								 | 
							
								dashedName: problem-295-lenticular-holes
							 | 
						||
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --description--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								We call the convex area enclosed by two circles a lenticular hole if:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The centres of both circles are on lattice points.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The two circles intersect at two distinct lattice points.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The interior of the convex area enclosed by both circles does not contain any lattice points.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Consider the circles: C0: x2+y2=25 C1: (x+4)2+(y-4)2=1 C2: (x-12)2+(y-4)2=65
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The circles C0, C1 and C2 are drawn in the picture below.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								C0 and C1 form a lenticular hole, as well as C0 and C2.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								We call an ordered pair of positive real numbers (r1, r2) a lenticular pair if there exist two circles with radii r1 and r2 that form a lenticular hole. We can verify that (1, 5) and (5, √65) are the lenticular pairs of the example above.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Let L(N) be the number of distinct lenticular pairs (r1, r2) for which 0 < r1 ≤ r2 ≤ N. We can verify that L(10) = 30 and L(100) = 3442.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Find L(100 000).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --hints--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								`euler295()` should return 4884650818.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								assert.strictEqual(euler295(), 4884650818);
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --seed--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								## --seed-contents--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								function euler295() {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return true;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								euler295();
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --solutions--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```js
							 | 
						||
| 
								 | 
							
								// solution required
							 | 
						||
| 
								 | 
							
								```
							 |