177 lines
5.9 KiB
Markdown
Raw Normal View History

---
title: Gaussian elimination
id: 5a23c84252665b21eecc7e77
challengeType: 5
---
## Description
<section id='description'>
Write a function to solve \(A.x = b\) using Gaussian elimination then backwards substitution. \(A\) being an \(n \times n\) matrix. Also, \(x\) and \(b\) are \(n\) by 1 vectors. To improve accuracy, please use partial pivoting and scaling.
</section>
## Instructions
<section id='instructions'>
</section>
## Tests
<section id='tests'>
```yml
tests:
- text: '''<code>gaussianElimination</code> should be a function.'''
testString: 'assert(typeof gaussianElimination==''function'',''<code>gaussianElimination</code> should be a function.'');'
- text: '''<code>gaussianElimination(''+JSON.stringify(tests[0][0])+'',''+JSON.stringify(tests[0][1])+'')</code> should return an array.'''
testString: 'assert(Array.isArray(gaussianElimination(tests[0][0],tests[0][1])),''<code>gaussianElimination(''+JSON.stringify(tests[0][0])+'',''+JSON.stringify(tests[0][1])+'')</code> should return an array.'');'
- text: '''<code>gaussianElimination(''+JSON.stringify(tests[0][0])+'',''+JSON.stringify(tests[0][1])+'')</code> should return <code>''+JSON.stringify(results[0])+''</code>.'''
testString: 'assert.deepEqual(gaussianElimination(tests[0][0],tests[0][1]),results[0],''<code>gaussianElimination(''+JSON.stringify(tests[0][0])+'',''+JSON.stringify(tests[0][1])+'')</code> should return <code>''+JSON.stringify(results[0])+''</code>.'');'
- text: '''<code>gaussianElimination(''+JSON.stringify(tests[1][0])+'',''+JSON.stringify(tests[1][1])+'')</code> should return <code>''+JSON.stringify(results[1])+''</code>.'''
testString: 'assert.deepEqual(gaussianElimination(tests[1][0],tests[1][1]),results[1],''<code>gaussianElimination(''+JSON.stringify(tests[1][0])+'',''+JSON.stringify(tests[1][1])+'')</code> should return <code>''+JSON.stringify(results[1])+''</code>.'');'
- text: '''<code>gaussianElimination(''+JSON.stringify(tests[2][0])+'',''+JSON.stringify(tests[2][1])+'')</code> should return <code>''+JSON.stringify(results[2])+''</code>.'''
testString: 'assert.deepEqual(gaussianElimination(tests[2][0],tests[2][1]),results[2],''<code>gaussianElimination(''+JSON.stringify(tests[2][0])+'',''+JSON.stringify(tests[2][1])+'')</code> should return <code>''+JSON.stringify(results[2])+''</code>.'');'
- text: '''<code>gaussianElimination(''+JSON.stringify(tests[3][0])+'',''+JSON.stringify(tests[3][1])+'')</code> should return <code>''+JSON.stringify(results[3])+''</code>.'''
testString: 'assert.deepEqual(gaussianElimination(tests[3][0],tests[3][1]),results[3],''<code>gaussianElimination(''+JSON.stringify(tests[3][0])+'',''+JSON.stringify(tests[3][1])+'')</code> should return <code>''+JSON.stringify(results[3])+''</code>.'');'
- text: '''<code>gaussianElimination(''+JSON.stringify(tests[4][0])+'',''+JSON.stringify(tests[4][1])+'')</code> should return <code>''+JSON.stringify(results[4])+''</code>.'''
testString: 'assert.deepEqual(gaussianElimination(tests[4][0],tests[4][1]),results[4],''<code>gaussianElimination(''+JSON.stringify(tests[4][0])+'',''+JSON.stringify(tests[4][1])+'')</code> should return <code>''+JSON.stringify(results[4])+''</code>.'');'
```
</section>
## Challenge Seed
<section id='challengeSeed'>
<div id='js-seed'>
```js
function gaussianElimination (A,b) {
// Good luck!
}
```
</div>
### After Test
<div id='js-teardown'>
```js
console.info('after the test');
```
</div>
</section>
## Solution
<section id='solution'>
```js
function gaussianElimination(A, b) {
// Lower Upper Decomposition
function ludcmp(A) {
// A is a matrix that we want to decompose into Lower and Upper matrices.
var d = true
var n = A.length
var idx = new Array(n) // Output vector with row permutations from partial pivoting
var vv = new Array(n) // Scaling information
for (var i=0; i<n; i++) {
var max = 0
for (var j=0; j<n; j++) {
var temp = Math.abs(A[i][j])
if (temp > max) max = temp
}
if (max == 0) return // Singular Matrix!
vv[i] = 1 / max // Scaling
}
var Acpy = new Array(n)
for (var i=0; i<n; i++) {
var Ai = A[i]
let Acpyi = new Array(Ai.length)
for (j=0; j<Ai.length; j+=1) Acpyi[j] = Ai[j]
Acpy[i] = Acpyi
}
A = Acpy
var tiny = 1e-20 // in case pivot element is zero
for (var i=0; ; i++) {
for (var j=0; j<i; j++) {
var sum = A[j][i]
for (var k=0; k<j; k++) sum -= A[j][k] * A[k][i];
A[j][i] = sum
}
var jmax = 0
var max = 0;
for (var j=i; j<n; j++) {
var sum = A[j][i]
for (var k=0; k<i; k++) sum -= A[j][k] * A[k][i];
A[j][i] = sum
var temp = vv[j] * Math.abs(sum)
if (temp >= max) {
max = temp
jmax = j
}
}
if (i <= jmax) {
for (var j=0; j<n; j++) {
var temp = A[jmax][j]
A[jmax][j] = A[i][j]
A[i][j] = temp
}
d = !d;
vv[jmax] = vv[i]
}
idx[i] = jmax;
if (i == n-1) break;
var temp = A[i][i]
if (temp == 0) A[i][i] = temp = tiny
temp = 1 / temp
for (var j=i+1; j<n; j++) A[j][i] *= temp
}
return {A:A, idx:idx, d:d}
}
// Lower Upper Back Substitution
function lubksb(lu, b) {
// solves the set of n linear equations A*x = b.
// lu is the object containing A, idx and d as determined by the routine ludcmp.
var A = lu.A
var idx = lu.idx
var n = idx.length
var bcpy = new Array(n)
for (var i=0; i<b.length; i+=1) bcpy[i] = b[i]
b = bcpy
for (var ii=-1, i=0; i<n; i++) {
var ix = idx[i]
var sum = b[ix]
b[ix] = b[i]
if (ii > -1)
for (var j=ii; j<i; j++) sum -= A[i][j] * b[j]
else if (sum)
ii = i
b[i] = sum
}
for (var i=n-1; i>=0; i--) {
var sum = b[i]
for (var j=i+1; j<n; j++) sum -= A[i][j] * b[j]
b[i] = sum / A[i][i]
}
return b // solution vector x
}
var lu = ludcmp(A)
if (lu === undefined) return // Singular Matrix!
return lubksb(lu, b)
}
```
</section>