45 lines
		
	
	
		
			827 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			45 lines
		
	
	
		
			827 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | |||
|  | id: 5900f3ef1000cf542c50ff02 | |||
|  | title: 'Problem 131: Prime cube partnership' | |||
|  | challengeType: 5 | |||
|  | forumTopicId: 301759 | |||
|  | dashedName: problem-131-prime-cube-partnership | |||
|  | --- | |||
|  | 
 | |||
|  | # --description--
 | |||
|  | 
 | |||
|  | There are some prime values, p, for which there exists a positive integer, n, such that the expression n3 + n2p is a perfect cube. | |||
|  | 
 | |||
|  | For example, when p = 19, 83 + 82×19 = 123. | |||
|  | 
 | |||
|  | What is perhaps most surprising is that for each prime with this property the value of n is unique, and there are only four such primes below one-hundred. | |||
|  | 
 | |||
|  | How many primes below one million have this remarkable property? | |||
|  | 
 | |||
|  | # --hints--
 | |||
|  | 
 | |||
|  | `euler131()` should return 173. | |||
|  | 
 | |||
|  | ```js | |||
|  | assert.strictEqual(euler131(), 173); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --seed--
 | |||
|  | 
 | |||
|  | ## --seed-contents--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | function euler131() { | |||
|  | 
 | |||
|  |   return true; | |||
|  | } | |||
|  | 
 | |||
|  | euler131(); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --solutions--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | // solution required | |||
|  | ``` |