2018-09-30 23:01:58 +01:00
---
id: 5900f5431000cf542c510056
challengeType: 5
title: 'Problem 471: Triangle inscribed in ellipse'
2019-08-05 09:17:33 -07:00
forumTopicId: 302148
2018-09-30 23:01:58 +01:00
---
## Description
< section id = 'description' >
The triangle ΔABC is inscribed in an ellipse with equation $\frac {x^2} {a^2} + \frac {y^2} {b^2} = 1$, 0 < 2b < a , a and b integers .
Let r(a,b) be the radius of the incircle of ΔABC when the incircle has center (2b, 0) and A has coordinates $\left( \frac a 2, \frac {\sqrt 3} 2 b\right)$.
For example, r(3,1) = ½, r(6,2) = 1, r(12,3) = 2.
Let $G(n) = \sum_{a=3}^n \sum_{b=1}^{\lfloor \frac {a - 1} 2 \rfloor} r(a, b)$
You are given G(10) = 20.59722222, G(100) = 19223.60980 (rounded to 10 significant digits).
Find G(1011).
Give your answer in scientific notation rounded to 10 significant digits. Use a lowercase e to separate mantissa and exponent.
For G(10) the answer would have been 2.059722222e1.
< / section >
## Instructions
< section id = 'instructions' >
< / section >
## Tests
< section id = 'tests' >
```yml
2018-10-04 14:37:37 +01:00
tests:
- text: < code > euler471()</ code > should return 1.895093981e+31.
2019-07-26 19:45:56 -07:00
testString: assert.strictEqual(euler471(), 1.895093981e+31);
2018-09-30 23:01:58 +01:00
```
< / section >
## Challenge Seed
< section id = 'challengeSeed' >
< div id = 'js-seed' >
```js
function euler471() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
euler471();
```
< / div >
< / section >
## Solution
< section id = 'solution' >
```js
// solution required
```
2019-07-18 08:24:12 -07:00
2018-09-30 23:01:58 +01:00
< / section >