2018-10-10 18:03:03 -04:00
|
|
|
|
---
|
|
|
|
|
id: 5900f5131000cf542c510024
|
2020-12-16 00:37:30 -07:00
|
|
|
|
title: 问题421:n15 +1的素因子
|
2018-10-10 18:03:03 -04:00
|
|
|
|
challengeType: 5
|
|
|
|
|
videoUrl: ''
|
2021-01-13 03:31:00 +01:00
|
|
|
|
dashedName: problem-421-prime-factors-of-n151
|
2018-10-10 18:03:03 -04:00
|
|
|
|
---
|
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --description--
|
2020-02-18 01:40:55 +09:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
对于n> 1的每个整数,n15 +1形式的数字是合成的。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
对于正整数n和m,将s(n,m)定义为不超过m的n15 +1个不同素数因子的总和。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
例如 215 + 1 = 3×3×11×331。 因此s(2.10)= 3且s(2,1000)= 3 + 11 + 331 = 345。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
同样是1015 +1 = 7×11×13×211×241×2161×9091。 因此s(10,100)= 31,而s(10,1000)= 483。 求出∑ s(n,108)为1≤n≤1011。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --hints--
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
`euler421()`应该返回2304215802083466200。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
|
|
|
|
```js
|
2020-12-16 00:37:30 -07:00
|
|
|
|
assert.strictEqual(euler421(), 2304215802083466200);
|
2018-10-10 18:03:03 -04:00
|
|
|
|
```
|
|
|
|
|
|
2021-01-13 03:31:00 +01:00
|
|
|
|
# --seed--
|
|
|
|
|
|
|
|
|
|
## --seed-contents--
|
|
|
|
|
|
|
|
|
|
```js
|
|
|
|
|
function euler421() {
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
euler421();
|
|
|
|
|
```
|
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --solutions--
|
2020-08-13 17:24:35 +02:00
|
|
|
|
|
2021-01-13 03:31:00 +01:00
|
|
|
|
```js
|
|
|
|
|
// solution required
|
|
|
|
|
```
|