2020-08-13 12:00:20 +02:00
|
|
|
---
|
|
|
|
id: 5e8f2f13c4cdbe86b5c72d95
|
|
|
|
challengeType: 11
|
|
|
|
videoId: K8bz1bmOCTw
|
2021-01-13 03:31:00 +01:00
|
|
|
dashedName: neural-networks-creating-a-model
|
2020-08-13 12:00:20 +02:00
|
|
|
---
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
# --question--
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
## --text--
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
Fill in the blanks below to build a sequential model of dense layers:
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
```py
|
|
|
|
model = __A__.__B__([
|
|
|
|
__A__.layers.Flatten(input_shape=(28, 28)),
|
|
|
|
__A__.layers.__C__(128, activation='relu'),
|
|
|
|
__A__.layers.__C__(10, activation='softmax')
|
|
|
|
])
|
|
|
|
```
|
|
|
|
|
|
|
|
## --answers--
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
A: `keras`
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
B: `Sequential`
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
C: `Dense`
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
---
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
A: `tf`
|
2020-08-13 12:00:20 +02:00
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
B: `Sequential`
|
|
|
|
|
|
|
|
C: `Categorical`
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
A: `keras`
|
|
|
|
|
|
|
|
B: `sequential`
|
|
|
|
|
|
|
|
C: `dense`
|
|
|
|
|
|
|
|
## --video-solution--
|
|
|
|
|
|
|
|
1
|
|
|
|
|