2019-12-12 23:17:57 +05:30
---
2020-02-19 12:56:40 +05:30
id: 5e4ce2f5ac708cc68c1df261
2019-12-12 23:17:57 +05:30
title: Linear congruential generator
challengeType: 5
2020-06-08 20:07:41 +05:30
forumTopicId: 385266
2021-01-13 03:31:00 +01:00
dashedName: linear-congruential-generator
2019-12-12 23:17:57 +05:30
---
2020-11-27 19:02:05 +01:00
# --description--
The [linear congruential generator ](<https://en.wikipedia.org/wiki/linear congruential generator> ) is a very simple example of a [random number generator ](<http://rosettacode.org/wiki/random number generator> ). All linear congruential generators use this formula:
2021-01-20 23:05:37 -07:00
$$r_{n + 1} = (a \times r_n + c) \bmod m$$
2020-11-27 19:02:05 +01:00
2019-12-12 23:17:57 +05:30
Where:
2020-11-27 19:02:05 +01:00
2019-12-12 23:17:57 +05:30
< ul >
< li > $ r_0 $ is a seed.< / li >
< li > $r_1$, $r_2$, $r_3$, ..., are the random numbers.< / li >
< li > $a$, $c$, $m$ are constants.< / li >
< / ul >
2020-11-27 19:02:05 +01:00
2019-12-12 23:17:57 +05:30
If one chooses the values of $a$, $c$ and $m$ with care, then the generator produces a uniform distribution of integers from $0$ to $m - 1$.
2020-11-27 19:02:05 +01:00
LCG numbers have poor quality. $r_n$ and $r\_{n + 1}$ are not independent, as true random numbers would be. Anyone who knows $r_n$ can predict $r\_{n + 1}$, therefore LCG is not cryptographically secure. The LCG is still good enough for simple tasks like [Miller-Rabin primality test ](<http://rosettacode.org/wiki/Miller-Rabin primality test> ), or [FreeCell deals ](<http://rosettacode.org/wiki/deal cards for FreeCell> ). Among the benefits of the LCG, one can easily reproduce a sequence of numbers, from the same $r_0$. One can also reproduce such sequence with a different programming language, because the formula is so simple.
# --instructions--
2019-12-12 23:17:57 +05:30
Write a function that takes $r_0,a,c,m,n$ as parameters and returns $r_n$.
2020-11-27 19:02:05 +01:00
# --hints--
`linearCongGenerator` should be a function.
```js
assert(typeof linearCongGenerator == 'function');
2019-12-12 23:17:57 +05:30
```
2020-11-27 19:02:05 +01:00
`linearCongGenerator(324, 1145, 177, 2148, 3)` should return a number.
2019-12-12 23:17:57 +05:30
2020-11-27 19:02:05 +01:00
```js
assert(typeof linearCongGenerator(324, 1145, 177, 2148, 3) == 'number');
```
2019-12-12 23:17:57 +05:30
2020-11-27 19:02:05 +01:00
`linearCongGenerator(324, 1145, 177, 2148, 3)` should return `855` .
2019-12-12 23:17:57 +05:30
```js
2020-11-27 19:02:05 +01:00
assert.equal(linearCongGenerator(324, 1145, 177, 2148, 3), 855);
```
2020-09-15 09:57:40 -07:00
2020-11-27 19:02:05 +01:00
`linearCongGenerator(234, 11245, 145, 83648, 4)` should return `1110` .
```js
assert.equal(linearCongGenerator(234, 11245, 145, 83648, 4), 1110);
2019-12-12 23:17:57 +05:30
```
2020-11-27 19:02:05 +01:00
`linearCongGenerator(85, 11, 1234, 214748, 5)` should return `62217` .
2019-12-12 23:17:57 +05:30
2020-11-27 19:02:05 +01:00
```js
assert.equal(linearCongGenerator(85, 11, 1234, 214748, 5), 62217);
```
`linearCongGenerator(0, 1103515245, 12345, 2147483648, 1)` should return `12345` .
```js
assert.equal(linearCongGenerator(0, 1103515245, 12345, 2147483648, 1), 12345);
```
`linearCongGenerator(0, 1103515245, 12345, 2147483648, 2)` should return `1406932606` .
```js
assert.equal(
linearCongGenerator(0, 1103515245, 12345, 2147483648, 2),
1406932606
);
```
2019-12-12 23:17:57 +05:30
2020-11-27 19:02:05 +01:00
# --seed--
## --seed-contents--
```js
function linearCongGenerator(r0, a, c, m, n) {
}
```
# --solutions--
2019-12-12 23:17:57 +05:30
```js
function linearCongGenerator(r0, a, c, m, n) {
for (let i = 0; i < n ; i + + ) {
r0 = (a * r0 + c) % m;
}
return r0;
}
```