2018-09-30 23:01:58 +01:00
---
id: 5900f4a31000cf542c50ffb6
title: 'Problem 311: Biclinic Integral Quadrilaterals'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 301967
2021-01-13 03:31:00 +01:00
dashedName: problem-311-biclinic-integral-quadrilaterals
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
ABCD is a convex, integer sided quadrilateral with 1 ≤ AB < BC < CD < AD.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
BD has integer length. O is the midpoint of BD. AO has integer length.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
We'll call ABCD a biclinic integral quadrilateral if AO = CO ≤ BO = DO.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
For example, the following quadrilateral is a biclinic integral quadrilateral: AB = 19, BC = 29, CD = 37, AD = 43, BD = 48 and AO = CO = 23.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
Let B(N) be the number of distinct biclinic integral quadrilaterals ABCD that satisfy AB2+BC2+CD2+AD2 ≤ N. We can verify that B(10 000) = 49 and B(1 000 000) = 38239.
2018-09-30 23:01:58 +01:00
Find B(10 000 000 000).
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
`euler311()` should return 2466018557.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
assert.strictEqual(euler311(), 2466018557);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
function euler311() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
euler311();
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```