41 lines
		
	
	
		
			988 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			41 lines
		
	
	
		
			988 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | |||
|  | id: 5900f4621000cf542c50ff74 | |||
|  | title: 'Problem 245: Coresilience' | |||
|  | challengeType: 5 | |||
|  | forumTopicId: 301892 | |||
|  | dashedName: problem-245-coresilience | |||
|  | --- | |||
|  | 
 | |||
|  | # --description--
 | |||
|  | 
 | |||
|  | We shall call a fraction that cannot be cancelled down a resilient fraction. Furthermore we shall define the resilience of a denominator, R(d), to be the ratio of its proper fractions that are resilient; for example, R(12) = 4⁄11. | |||
|  | 
 | |||
|  | The resilience of a number d > 1 is then φ(d)d − 1 , where φ is Euler's totient function. We further define the coresilience of a number n > 1 as C(n)= n − φ(n)n − 1. The coresilience of a prime p is C(p) = 1p − 1. Find the sum of all composite integers 1 < n ≤ 2×1011, for which C(n) is a unit fraction. | |||
|  | 
 | |||
|  | # --hints--
 | |||
|  | 
 | |||
|  | `euler245()` should return 288084712410001. | |||
|  | 
 | |||
|  | ```js | |||
|  | assert.strictEqual(euler245(), 288084712410001); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --seed--
 | |||
|  | 
 | |||
|  | ## --seed-contents--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | function euler245() { | |||
|  | 
 | |||
|  |   return true; | |||
|  | } | |||
|  | 
 | |||
|  | euler245(); | |||
|  | ``` | |||
|  | 
 | |||
|  | # --solutions--
 | |||
|  | 
 | |||
|  | ```js | |||
|  | // solution required | |||
|  | ``` |