271 lines
8.6 KiB
Markdown
271 lines
8.6 KiB
Markdown
|
---
|
||
|
title: Zhang-Suen thinning algorithm
|
||
|
id: 594810f028c0303b75339ad7
|
||
|
challengeType: 5
|
||
|
---
|
||
|
|
||
|
## Description
|
||
|
<section id='description'>
|
||
|
This is an algorithm used to thin a black and white i.e. one bit per pixel images.
|
||
|
For example, with an input image of:
|
||
|
<pre>
|
||
|
################# #############
|
||
|
################## ################
|
||
|
################### ##################
|
||
|
######## ####### ###################
|
||
|
###### ####### ####### ######
|
||
|
###### ####### #######
|
||
|
################# #######
|
||
|
################ #######
|
||
|
################# #######
|
||
|
###### ####### #######
|
||
|
###### ####### #######
|
||
|
###### ####### ####### ######
|
||
|
######## ####### ###################
|
||
|
######## ####### ###### ################## ######
|
||
|
######## ####### ###### ################ ######
|
||
|
######## ####### ###### ############# ######
|
||
|
</pre>
|
||
|
It produces the thinned output:
|
||
|
<pre>
|
||
|
|
||
|
# ########## #######
|
||
|
## # #### #
|
||
|
# # ##
|
||
|
# # #
|
||
|
# # #
|
||
|
# # #
|
||
|
############ #
|
||
|
# # #
|
||
|
# # #
|
||
|
# # #
|
||
|
# # #
|
||
|
# ##
|
||
|
# ############
|
||
|
### ###
|
||
|
|
||
|
</pre>
|
||
|
<h2>Algorithm</h2>
|
||
|
Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes.
|
||
|
The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:
|
||
|
<table border="1">
|
||
|
<tr><td>P9</td><td>P2</td><td>P3</td></tr>
|
||
|
<tr><td>P8</td><td><b>P1</b></td><td>P4</td></tr>
|
||
|
<tr><td>P7</td><td>P6</td><td>P5</td></tr>
|
||
|
</table>
|
||
|
Obviously the boundary pixels of the image cannot have the full eight neighbours.
|
||
|
|
||
|
Define $A(P1)$ = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular).
|
||
|
|
||
|
|
||
|
Define $B(P1)$ = the number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
|
||
|
|
||
|
<h3>Step 1:</h3>
|
||
|
All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage.
|
||
|
(0) The pixel is black and has eight neighbours
|
||
|
(1) $2 <= B(P1) <= 6$
|
||
|
(2) $A(P1) = 1$
|
||
|
(3) At least one of P2 and P4 and P6 is white
|
||
|
(4) At least one of P4 and P6 and P8 is white
|
||
|
After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white.
|
||
|
<h3>Step 2:</h3>
|
||
|
All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage.
|
||
|
(0) The pixel is black and has eight neighbours
|
||
|
(1) $2 <= B(P1) <= 6$
|
||
|
(2) $A(P1) = 1$
|
||
|
(3) At least one of P2 and P4 and "'P8"' is white
|
||
|
(4) At least one of "'P2"' and P6 and P8 is white
|
||
|
After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white.
|
||
|
Iteration:
|
||
|
If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed.
|
||
|
<p>
|
||
|
Task:
|
||
|
Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes.
|
||
|
</p>
|
||
|
</section>
|
||
|
|
||
|
## Instructions
|
||
|
<section id='instructions'>
|
||
|
|
||
|
</section>
|
||
|
|
||
|
## Tests
|
||
|
<section id='tests'>
|
||
|
|
||
|
```yml
|
||
|
- text: <code>thinImage</code> must be a function
|
||
|
testString: 'assert.equal(typeof thinImage, "function", "<code>thinImage</code> must be a function");'
|
||
|
- text: <code>thinImage</code> must return an array
|
||
|
testString: 'assert(Array.isArray(result), "<code>thinImage</code> must return an array");'
|
||
|
- text: <code>thinImage</code> must return an array of strings
|
||
|
testString: 'assert.equal(typeof result[0], "string", "<code>thinImage</code> must return an array of strings");'
|
||
|
- text: <code>thinImage</code> must return an array of strings
|
||
|
testString: 'assert.deepEqual(result, expected, "<code>thinImage</code> must return an array of strings");'
|
||
|
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
## Challenge Seed
|
||
|
<section id='challengeSeed'>
|
||
|
|
||
|
<div id='js-seed'>
|
||
|
|
||
|
```js
|
||
|
const testImage = [
|
||
|
' ',
|
||
|
' ################# ############# ',
|
||
|
' ################## ################ ',
|
||
|
' ################### ################## ',
|
||
|
' ######## ####### ################### ',
|
||
|
' ###### ####### ####### ###### ',
|
||
|
' ###### ####### ####### ',
|
||
|
' ################# ####### ',
|
||
|
' ################ ####### ',
|
||
|
' ################# ####### ',
|
||
|
' ###### ####### ####### ',
|
||
|
' ###### ####### ####### ',
|
||
|
' ###### ####### ####### ###### ',
|
||
|
' ######## ####### ################### ',
|
||
|
' ######## ####### ###### ################## ###### ',
|
||
|
' ######## ####### ###### ################ ###### ',
|
||
|
' ######## ####### ###### ############# ###### ',
|
||
|
' '];
|
||
|
|
||
|
function thinImage(image) {
|
||
|
// Good luck!
|
||
|
}
|
||
|
```
|
||
|
|
||
|
</div>
|
||
|
|
||
|
|
||
|
### After Test
|
||
|
<div id='js-teardown'>
|
||
|
|
||
|
```js
|
||
|
console.info('after the test');
|
||
|
```
|
||
|
|
||
|
</div>
|
||
|
|
||
|
</section>
|
||
|
|
||
|
## Solution
|
||
|
<section id='solution'>
|
||
|
|
||
|
|
||
|
```js
|
||
|
function Point(x, y) {
|
||
|
this.x = x;
|
||
|
this.y = y;
|
||
|
}
|
||
|
|
||
|
const ZhangSuen = (function () {
|
||
|
function ZhangSuen() {
|
||
|
}
|
||
|
|
||
|
ZhangSuen.nbrs = [[0, -1], [1, -1], [1, 0], [1, 1], [0, 1], [-1, 1], [-1, 0], [-1, -1], [0, -1]];
|
||
|
|
||
|
ZhangSuen.nbrGroups = [[[0, 2, 4], [2, 4, 6]], [[0, 2, 6], [0, 4, 6]]];
|
||
|
|
||
|
ZhangSuen.toWhite = [];
|
||
|
|
||
|
ZhangSuen.main = function (image) {
|
||
|
ZhangSuen.grid = new Array(image);
|
||
|
for (let r = 0; r < image.length; r++) {
|
||
|
ZhangSuen.grid[r] = image[r].split(");
|
||
|
}
|
||
|
ZhangSuen.thinImage();
|
||
|
return ZhangSuen.getResult();
|
||
|
};
|
||
|
|
||
|
ZhangSuen.thinImage = function () {
|
||
|
let firstStep = false;
|
||
|
let hasChanged;
|
||
|
do {
|
||
|
hasChanged = false;
|
||
|
firstStep = !firstStep;
|
||
|
for (let r = 1; r < ZhangSuen.grid.length - 1; r++) {
|
||
|
for (let c = 1; c < ZhangSuen.grid[0].length - 1; c++) {
|
||
|
if (ZhangSuen.grid[r][c] !== '#') {
|
||
|
continue;
|
||
|
}
|
||
|
const nn = ZhangSuen.numNeighbors(r, c);
|
||
|
if (nn < 2 || nn > 6) {
|
||
|
continue;
|
||
|
}
|
||
|
if (ZhangSuen.numTransitions(r, c) !== 1) {
|
||
|
continue;
|
||
|
}
|
||
|
if (!ZhangSuen.atLeastOneIsWhite(r, c, firstStep ? 0 : 1)) {
|
||
|
continue;
|
||
|
}
|
||
|
ZhangSuen.toWhite.push(new Point(c, r));
|
||
|
hasChanged = true;
|
||
|
}
|
||
|
}
|
||
|
for (let i = 0; i < ZhangSuen.toWhite.length; i++) {
|
||
|
const p = ZhangSuen.toWhite[i];
|
||
|
ZhangSuen.grid[p.y][p.x] = ' ';
|
||
|
}
|
||
|
ZhangSuen.toWhite = [];
|
||
|
} while ((firstStep || hasChanged));
|
||
|
};
|
||
|
|
||
|
ZhangSuen.numNeighbors = function (r, c) {
|
||
|
let count = 0;
|
||
|
for (let i = 0; i < ZhangSuen.nbrs.length - 1; i++) {
|
||
|
if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === '#') {
|
||
|
count++;
|
||
|
}
|
||
|
}
|
||
|
return count;
|
||
|
};
|
||
|
|
||
|
ZhangSuen.numTransitions = function (r, c) {
|
||
|
let count = 0;
|
||
|
for (let i = 0; i < ZhangSuen.nbrs.length - 1; i++) {
|
||
|
if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === ' ') {
|
||
|
if (ZhangSuen.grid[r + ZhangSuen.nbrs[i + 1][1]][c + ZhangSuen.nbrs[i + 1][0]] === '#') {
|
||
|
count++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return count;
|
||
|
};
|
||
|
|
||
|
ZhangSuen.atLeastOneIsWhite = function (r, c, step) {
|
||
|
let count = 0;
|
||
|
const group = ZhangSuen.nbrGroups[step];
|
||
|
for (let i = 0; i < 2; i++) {
|
||
|
for (let j = 0; j < group[i].length; j++) {
|
||
|
const nbr = ZhangSuen.nbrs[group[i][j]];
|
||
|
if (ZhangSuen.grid[r + nbr[1]][c + nbr[0]] === ' ') {
|
||
|
count++;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return count > 1;
|
||
|
};
|
||
|
|
||
|
ZhangSuen.getResult = function () {
|
||
|
const result = [];
|
||
|
for (let i = 0; i < ZhangSuen.grid.length; i++) {
|
||
|
const row = ZhangSuen.grid[i].join(");
|
||
|
result.push(row);
|
||
|
}
|
||
|
return result;
|
||
|
};
|
||
|
return ZhangSuen;
|
||
|
}());
|
||
|
|
||
|
function thinImage(image) {
|
||
|
return ZhangSuen.main(image);
|
||
|
}
|
||
|
|
||
|
```
|
||
|
|
||
|
</section>
|