2018-10-04 14:47:55 +01:00
---
title: Completing the Square
---
## Completing the Square
2018-10-15 02:57:50 +01:00
<!-- The article goes here, in GitHub - flavored Markdown. Feel free to add YouTube videos, images, and CodePen/JSBin embeds -->
2018-10-04 14:47:55 +01:00
2018-10-15 02:57:50 +01:00
The completing the square method is one of the many methods for solving a < a href = 'https://guide.freecodecamp.org/mathematics/quadratic-equations' target = '_blank' > quadratic eduation< / a > . It involves changing the form of the equation so that the left side becomes a perfect square.
2018-10-04 14:47:55 +01:00
2018-10-15 02:57:50 +01:00
A quadratic equation generally takes the form: < em > ax< sup > 2< / sup > + bx + c< / em > = 0. In solving the above, follow the following steps:
1. Move the constant value to the Right Hand Side of the equation so it becomes: < br >
< pre > < em > ax< sup > 2< / sup > + bx = -c< / em > < / pre >
2. Make the coefficient of x< sup > 2</ sup > equal to 1 by dividing both sides of the equation by < em > a</ em > so that we now have: < br >
< pre > x< sup > 2< / sup > + (< sup > b< / sup > /< sub > a< / sub > )x = - (< sup > c< / sup > /< sub > a< / sub > )< / pre >
3. Next, add the square of half of the coefficient of the < em > x</ em > -term to both sides of the equation: < br >
< pre > x< sup > 2< / sup > + (< sup > b< / sup > /< sub > a< / sub > )x + (< sup > b< / sup > /< sub > 2a< / sub > )< sup > 2< / sup > = (< sup > b< / sup > /< sub > 2a< / sub > )< sup > 2< / sup > - (< sup > c< / sup > /< sub > a< / sub > )< / pre >
4. Completing the square on the Left Hand Side and simplifying the Right Hand Side of the above equation, we have:
< pre > (x< sup > < / sup > + < sup > b< / sup > /< sub > 2a< / sub > )< sup > 2< / sup > = (< sup > b< sup > 2< / sup > < / sup > /< sub > 4a< sup > 2< / sup > < / sub > ) - (< sup > c< / sup > /< sub > a< / sub > )< / pre >
5. Further simplpfying the Right Hand Side,
< pre > (x< sup > < / sup > + < sup > b< / sup > /< sub > 2a< / sub > )< sup > 2< / sup > = (b< sup > 2< / sup > - 4ac)/4a< sup > 2< / sup > < / pre >
6. Finding the square root of both sides of the equation,
< pre > x< sup > < / sup > + < sup > b< / sup > /< sub > 2a< / sub > = √ (b< sup > 2< / sup > - 4ac) ÷ 2a < / pre >
7. By making x the subject of our formula, we are able to solve for its value completely:
< pre > x< sup ></ sup > = -b & #177 ; √ (b< sup > 2</ sup > - 4ac) ÷ 2a </ pre >
2018-10-04 14:47:55 +01:00
#### More Information:
<!-- Please add any articles you think might be helpful to read before writing the article -->
2018-10-15 02:57:50 +01:00
* [Varsity Tutors ](https://www.varsitytutors.com/hotmath/hotmath_help/topics/completing-the-square )
* [Maths is Fun ](https://www.mathsisfun.com/algebra/completing-square.html )
2018-10-04 14:47:55 +01:00