2018-10-10 18:03:03 -04:00
|
|
|
|
---
|
|
|
|
|
id: 5900f5131000cf542c510025
|
|
|
|
|
challengeType: 5
|
|
|
|
|
videoUrl: ''
|
2020-10-01 17:54:21 +02:00
|
|
|
|
title: 问题422:双曲线上的点序列
|
2018-10-10 18:03:03 -04:00
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## Description
|
2020-02-18 01:40:55 +09:00
|
|
|
|
<section id="description">
|
|
|
|
|
假设H是由等式12x2 + 7xy-12y2 = 625定义的双曲线。
|
|
|
|
|
|
|
|
|
|
接下来,将X定义为点(7,1)。 可以看出X在H中。
|
|
|
|
|
|
|
|
|
|
现在,我们将H中的点序列{Pi:i≥1}定义为:
|
|
|
|
|
P1 =(13,61/4)。
|
|
|
|
|
P2 =(-43/6,-4)。
|
|
|
|
|
对于i> 2,Pi是H中与Pi-1不同的唯一点,因此线PiPi-1与线Pi-2X平行。 可以证明Pi是定义明确的,并且其坐标始终是有理的。
|
|
|
|
|
您得到P3 =(-19/2,-229/24),P4 =(1267/144,-37/12)和P7 =(17194218091/143327232,274748766781/1719926784)。
|
|
|
|
|
|
|
|
|
|
用以下格式找到n = 1114的Pn:如果Pn =(a / b,c / d),其中分数是最低项,而分母是正数,则答案是(a + b + c + d)mod 1 000 007。
|
|
|
|
|
|
|
|
|
|
对于n = 7,答案应该是:806236837。
|
|
|
|
|
</section>
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
|
|
|
|
## Instructions
|
2020-02-18 01:40:55 +09:00
|
|
|
|
<section id="instructions">
|
|
|
|
|
</section>
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
|
|
|
|
## Tests
|
|
|
|
|
<section id='tests'>
|
|
|
|
|
|
|
|
|
|
```yml
|
|
|
|
|
tests:
|
2020-02-18 01:40:55 +09:00
|
|
|
|
- text: <code>euler422()</code>应该返回92060460。
|
|
|
|
|
testString: assert.strictEqual(euler422(), 92060460);
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
</section>
|
|
|
|
|
|
|
|
|
|
## Challenge Seed
|
|
|
|
|
<section id='challengeSeed'>
|
|
|
|
|
|
|
|
|
|
<div id='js-seed'>
|
|
|
|
|
|
|
|
|
|
```js
|
|
|
|
|
function euler422() {
|
|
|
|
|
// Good luck!
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
euler422();
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</section>
|
|
|
|
|
|
|
|
|
|
## Solution
|
|
|
|
|
<section id='solution'>
|
|
|
|
|
|
|
|
|
|
```js
|
|
|
|
|
// solution required
|
|
|
|
|
```
|
2020-08-13 17:24:35 +02:00
|
|
|
|
|
|
|
|
|
/section>
|