53 lines
889 B
Markdown
53 lines
889 B
Markdown
|
---
|
||
|
id: 5e8f2f13c4cdbe86b5c72d98
|
||
|
challengeType: 11
|
||
|
videoId: kfv0K8MtkIc
|
||
|
---
|
||
|
|
||
|
## Description
|
||
|
<section id='description'>
|
||
|
</section>
|
||
|
|
||
|
## Tests
|
||
|
<section id='tests'>
|
||
|
|
||
|
```yml
|
||
|
question:
|
||
|
text: |
|
||
|
Fill in the blanks below to complete the architecture for a convolutional neural network:
|
||
|
|
||
|
```py
|
||
|
model = models.__A__()
|
||
|
model.add(layers.__B__(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
|
||
|
model.add(layers.__C__(2, 2))
|
||
|
model.add(layers.__B__(64, (3, 3), activation='relu'))
|
||
|
model.add(layers.__C__(2, 2))
|
||
|
model.add(layers.__B__(32, (3, 3), activation='relu'))
|
||
|
model.add(layers.__C__(2, 2))
|
||
|
```
|
||
|
|
||
|
answers:
|
||
|
- |
|
||
|
A: `Sequential`
|
||
|
|
||
|
B: `add`
|
||
|
|
||
|
C: `Wrapper`
|
||
|
- |
|
||
|
A: `keras`
|
||
|
|
||
|
B: `Cropping2D`
|
||
|
|
||
|
C: `AlphaDropout`
|
||
|
- |
|
||
|
A: `Sequential`
|
||
|
|
||
|
B: `Conv2D`
|
||
|
|
||
|
C: `MaxPooling2D`
|
||
|
solution: 3
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|