2018-10-10 18:03:03 -04:00
---
id: 5900f3fd1000cf542c50ff10
2021-02-06 04:42:36 +00:00
title: 'Problem 145: How many reversible numbers are there below one-billion?'
2018-10-10 18:03:03 -04:00
challengeType: 5
2021-02-06 04:42:36 +00:00
forumTopicId: 301774
2021-01-13 03:31:00 +01:00
dashedName: problem-145-how-many-reversible-numbers-are-there-below-one-billion
2018-10-10 18:03:03 -04:00
---
2020-12-16 00:37:30 -07:00
# --description--
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
Some positive integers n have the property that the sum \[ n + reverse(n) ] consists entirely of odd (decimal) digits. For instance, 36 + 63 = 99 and 409 + 904 = 1313. We will call such numbers reversible; so 36, 63, 409, and 904 are reversible. Leading zeroes are not allowed in either n or reverse(n).
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
There are 120 reversible numbers below one-thousand.
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
How many reversible numbers are there below one-billion (109)?
2018-10-10 18:03:03 -04:00
2020-12-16 00:37:30 -07:00
# --hints--
2018-10-10 18:03:03 -04:00
2021-02-06 04:42:36 +00:00
`euler145()` should return 608720.
2018-10-10 18:03:03 -04:00
```js
2020-12-16 00:37:30 -07:00
assert.strictEqual(euler145(), 608720);
2018-10-10 18:03:03 -04:00
```
2021-01-13 03:31:00 +01:00
# --seed--
## --seed-contents--
```js
function euler145() {
return true;
}
euler145();
```
2020-12-16 00:37:30 -07:00
# --solutions--
2020-08-13 17:24:35 +02:00
2021-01-13 03:31:00 +01:00
```js
// solution required
```