2018-09-30 23:01:58 +01:00
---
id: 5900f4571000cf542c50ff69
title: 'Problem 234: Semidivisible numbers'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 301878
2021-01-13 03:31:00 +01:00
dashedName: problem-234-semidivisible-numbers
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2018-09-30 23:01:58 +01:00
For an integer n ≥ 4, we define the lower prime square root of n, denoted by lps(n), as the largest prime ≤ √n and the upper prime square root of n, ups(n), as the smallest prime ≥ √n.
2020-11-27 19:02:05 +01:00
2018-09-30 23:01:58 +01:00
So, for example, lps(4) = 2 = ups(4), lps(1000) = 31, ups(1000) = 37.
2020-11-27 19:02:05 +01:00
2018-09-30 23:01:58 +01:00
Let us call an integer n ≥ 4 semidivisible, if one of lps(n) and ups(n) divides n, but not both.
2020-11-27 19:02:05 +01:00
The sum of the semidivisible numbers not exceeding 15 is 30, the numbers are 8, 10 and 12. 15 is not semidivisible because it is a multiple of both lps(15) = 3 and ups(15) = 5. As a further example, the sum of the 92 semidivisible numbers up to 1000 is 34825.
2018-09-30 23:01:58 +01:00
What is the sum of all semidivisible numbers not exceeding 999966663333 ?
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
`euler234()` should return 1259187438574927000.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
assert.strictEqual(euler234(), 1259187438574927000);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
function euler234() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
euler234();
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```