2018-09-30 23:01:58 +01:00
---
id: 5900f46e1000cf542c50ff80
title: 'Problem 257: Angular Bisectors'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 301905
2021-01-13 03:31:00 +01:00
dashedName: problem-257-angular-bisectors
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
Given is an integer sided triangle ABC with sides a ≤ b ≤ c.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
(AB = c, BC = a and AC = b).
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
The angular bisectors of the triangle intersect the sides at points E, F and G (see picture below).
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
The segments EF, EG and FG partition the triangle ABC into four smaller triangles: AEG, BFE, CGF and EFG. It can be proven that for each of these four triangles the ratio area(ABC)/area(subtriangle) is rational. However, there exist triangles for which some or all of these ratios are integral.
2018-09-30 23:01:58 +01:00
How many triangles ABC with perimeter≤100,000,000 exist so that the ratio area(ABC)/area(AEG) is integral?
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
`euler257()` should return 139012411.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
assert.strictEqual(euler257(), 139012411);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
function euler257() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
euler257();
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```