2018-10-04 14:47:55 +01:00
|
|
|
---
|
2019-07-30 00:25:58 +05:30
|
|
|
title: 'Problem 8: Largest product in a series'
|
2018-10-04 14:47:55 +01:00
|
|
|
---
|
2019-07-24 00:59:27 -07:00
|
|
|
# Problem 8: Largest product in a series
|
2018-10-04 14:47:55 +01:00
|
|
|
|
2019-07-24 00:59:27 -07:00
|
|
|
---
|
|
|
|
## Problem Explanation
|
2018-10-04 14:47:55 +01:00
|
|
|
|
2018-10-20 23:12:13 +05:30
|
|
|
- In this challenge we need to get the largest product of `n` cosnecutive numbers.
|
|
|
|
- We can use the sliding window method to solve this problem.
|
|
|
|
- Steps to follow:
|
|
|
|
1. Select the first n consecutive numbers.
|
|
|
|
2. Find their product.
|
|
|
|
3. Compare it to the maximum product yet.
|
|
|
|
4. Move the pointer by 1 element.
|
|
|
|
5. Repeat the process.
|
|
|
|
- This algorithm's big O is **O(n\*m)** where n is the length of the array and m is the number of consecutive elements.
|
2019-07-24 00:59:27 -07:00
|
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
## Solutions
|
|
|
|
<details><summary>Solution 1 (Click to Show/Hide)</summary>
|
|
|
|
|
2018-10-20 23:12:13 +05:30
|
|
|
```js
|
|
|
|
function largestProductinaSeries(n) {
|
2019-07-24 00:59:27 -07:00
|
|
|
let thousandDigits = [
|
|
|
|
7,
|
|
|
|
3,
|
|
|
|
1,
|
|
|
|
6,
|
|
|
|
7,
|
|
|
|
1,
|
|
|
|
7,
|
|
|
|
6,
|
|
|
|
5,
|
|
|
|
3,
|
|
|
|
1,
|
|
|
|
3,
|
|
|
|
3,
|
|
|
|
0,
|
|
|
|
6,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
9,
|
|
|
|
1,
|
|
|
|
9,
|
|
|
|
2,
|
|
|
|
2,
|
|
|
|
5,
|
|
|
|
1,
|
|
|
|
1,
|
|
|
|
9,
|
|
|
|
6,
|
|
|
|
7,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
2,
|
|
|
|
6,
|
|
|
|
5,
|
|
|
|
7,
|
|
|
|
4,
|
|
|
|
7,
|
|
|
|
4,
|
|
|
|
2,
|
|
|
|
3,
|
|
|
|
5,
|
|
|
|
5,
|
|
|
|
3,
|
|
|
|
4,
|
|
|
|
9,
|
|
|
|
1,
|
|
|
|
9,
|
|
|
|
4,
|
|
|
|
9,
|
|
|
|
3,
|
|
|
|
4,
|
|
|
|
9,
|
|
|
|
6,
|
|
|
|
9,
|
|
|
|
8,
|
|
|
|
3,
|
|
|
|
5,
|
|
|
|
2,
|
|
|
|
0,
|
|
|
|
3,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
7,
|
|
|
|
7,
|
|
|
|
4,
|
|
|
|
5,
|
|
|
|
0,
|
|
|
|
6,
|
|
|
|
3,
|
|
|
|
2,
|
|
|
|
6,
|
|
|
|
2,
|
|
|
|
3,
|
|
|
|
9,
|
|
|
|
5,
|
|
|
|
7,
|
|
|
|
8,
|
|
|
|
3,
|
|
|
|
1,
|
|
|
|
8,
|
|
|
|
0,
|
|
|
|
1,
|
|
|
|
6,
|
|
|
|
9,
|
|
|
|
8,
|
|
|
|
4,
|
|
|
|
8,
|
|
|
|
0,
|
|
|
|
1,
|
|
|
|
8,
|
|
|
|
6,
|
|
|
|
9,
|
|
|
|
4,
|
|
|
|
7,
|
|
|
|
8,
|
|
|
|
8,
|
|
|
|
5,
|
|
|
|
1,
|
|
|
|
8,
|
|
|
|
4,
|
|
|
|
3,
|
|
|
|
8,
|
|
|
|
5,
|
|
|
|
8,
|
|
|
|
6,
|
|
|
|
1,
|
|
|
|
5,
|
|
|
|
6,
|
|
|
|
0,
|
|
|
|
7,
|
|
|
|
8,
|
|
|
|
9,
|
|
|
|
1,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
9,
|
|
|
|
4,
|
|
|
|
9,
|
|
|
|
4,
|
|
|
|
9,
|
|
|
|
5,
|
|
|
|
4,
|
|
|
|
5,
|
|
|
|
9,
|
|
|
|
5,
|
|
|
|
0,
|
|
|
|
1,
|
|
|
|
7,
|
|
|
|
3,
|
|
|
|
7,
|
|
|
|
9,
|
|
|
|
5,
|
|
|
|
8,
|
|
|
|
3,
|
|
|
|
3,
|
|
|
|
1,
|
|
|
|
9,
|
|
|
|
5,
|
|
|
|
2,
|
|
|
|
8,
|
|
|
|
5,
|
|
|
|
3,
|
|
|
|
2,
|
|
|
|
0,
|
|
|
|
8,
|
|
|
|
8,
|
|
|
|
0,
|
|
|
|
5,
|
|
|
|
5,
|
|
|
|
1,
|
|
|
|
1,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
5,
|
|
|
|
4,
|
|
|
|
0,
|
|
|
|
6,
|
|
|
|
9,
|
|
|
|
8,
|
|
|
|
7,
|
|
|
|
4,
|
|
|
|
7,
|
|
|
|
1,
|
|
|
|
5,
|
|
|
|
8,
|
|
|
|
5,
|
|
|
|
2,
|
|
|
|
3,
|
|
|
|
8,
|
|
|
|
6,
|
|
|
|
3,
|
|
|
|
0,
|
|
|
|
5,
|
|
|
|
0,
|
|
|
|
7,
|
|
|
|
1,
|
|
|
|
5,
|
|
|
|
6,
|
|
|
|
9,
|
|
|
|
3,
|
|
|
|
2,
|
|
|
|
9,
|
|
|
|
0,
|
|
|
|
9,
|
|
|
|
6,
|
|
|
|
3,
|
|
|
|
2,
|
|
|
|
9,
|
|
|
|
5,
|
|
|
|
2,
|
|
|
|
2,
|
|
|
|
7,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
3,
|
|
|
|
0,
|
|
|
|
4,
|
|
|
|
3,
|
|
|
|
5,
|
|
|
|
5,
|
|
|
|
7,
|
|
|
|
6,
|
|
|
|
6,
|
|
|
|
8,
|
|
|
|
9,
|
|
|
|
6,
|
|
|
|
6,
|
|
|
|
4,
|
|
|
|
8,
|
|
|
|
9,
|
|
|
|
5,
|
|
|
|
0,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
5,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
5,
|
|
|
|
2,
|
|
|
|
3,
|
|
|
|
1,
|
|
|
|
6,
|
|
|
|
1,
|
|
|
|
7,
|
|
|
|
3,
|
|
|
|
1,
|
|
|
|
8,
|
|
|
|
5,
|
|
|
|
6,
|
|
|
|
4,
|
|
|
|
0,
|
|
|
|
3,
|
|
|
|
0,
|
|
|
|
9,
|
|
|
|
8,
|
|
|
|
7,
|
|
|
|
1,
|
|
|
|
1,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
1,
|
|
|
|
7,
|
|
|
|
2,
|
|
|
|
2,
|
|
|
|
3,
|
|
|
|
8,
|
|
|
|
3,
|
|
|
|
1,
|
|
|
|
1,
|
|
|
|
3,
|
|
|
|
6,
|
|
|
|
2,
|
|
|
|
2,
|
|
|
|
2,
|
|
|
|
9,
|
|
|
|
8,
|
|
|
|
9,
|
|
|
|
3,
|
|
|
|
4,
|
|
|
|
2,
|
|
|
|
3,
|
|
|
|
3,
|
|
|
|
8,
|
|
|
|
0,
|
|
|
|
3,
|
|
|
|
0,
|
|
|
|
8,
|
|
|
|
1,
|
|
|
|
3,
|
|
|
|
5,
|
|
|
|
3,
|
|
|
|
3,
|
|
|
|
6,
|
|
|
|
2,
|
|
|
|
7,
|
|
|
|
6,
|
|
|
|
6,
|
|
|
|
1,
|
|
|
|
4,
|
|
|
|
2,
|
|
|
|
8,
|
|
|
|
2,
|
|
|
|
8,
|
|
|
|
0,
|
|
|
|
6,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
8,
|
|
|
|
6,
|
|
|
|
6,
|
|
|
|
4,
|
|
|
|
5,
|
|
|
|
2,
|
|
|
|
3,
|
|
|
|
8,
|
|
|
|
7,
|
|
|
|
4,
|
|
|
|
9,
|
|
|
|
3,
|
|
|
|
0,
|
|
|
|
3,
|
|
|
|
5,
|
|
|
|
8,
|
|
|
|
9,
|
|
|
|
0,
|
|
|
|
7,
|
|
|
|
2,
|
|
|
|
9,
|
|
|
|
6,
|
|
|
|
2,
|
|
|
|
9,
|
|
|
|
0,
|
|
|
|
4,
|
|
|
|
9,
|
|
|
|
1,
|
|
|
|
5,
|
|
|
|
6,
|
|
|
|
0,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
0,
|
|
|
|
7,
|
|
|
|
7,
|
|
|
|
2,
|
|
|
|
3,
|
|
|
|
9,
|
|
|
|
0,
|
|
|
|
7,
|
|
|
|
1,
|
|
|
|
3,
|
|
|
|
8,
|
|
|
|
1,
|
|
|
|
0,
|
|
|
|
5,
|
|
|
|
1,
|
|
|
|
5,
|
|
|
|
8,
|
|
|
|
5,
|
|
|
|
9,
|
|
|
|
3,
|
|
|
|
0,
|
|
|
|
7,
|
|
|
|
9,
|
|
|
|
6,
|
|
|
|
0,
|
|
|
|
8,
|
|
|
|
6,
|
|
|
|
6,
|
|
|
|
7,
|
|
|
|
0,
|
|
|
|
1,
|
|
|
|
7,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
2,
|
|
|
|
7,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
1,
|
|
|
|
8,
|
|
|
|
8,
|
|
|
|
3,
|
|
|
|
9,
|
|
|
|
9,
|
|
|
|
8,
|
|
|
|
7,
|
|
|
|
9,
|
|
|
|
7,
|
|
|
|
9,
|
|
|
|
0,
|
|
|
|
8,
|
|
|
|
7,
|
|
|
|
9,
|
|
|
|
2,
|
|
|
|
2,
|
|
|
|
7,
|
|
|
|
4,
|
|
|
|
9,
|
|
|
|
2,
|
|
|
|
1,
|
|
|
|
9,
|
|
|
|
0,
|
|
|
|
1,
|
|
|
|
6,
|
|
|
|
9,
|
|
|
|
9,
|
|
|
|
7,
|
|
|
|
2,
|
|
|
|
0,
|
|
|
|
8,
|
|
|
|
8,
|
|
|
|
8,
|
|
|
|
0,
|
|
|
|
9,
|
|
|
|
3,
|
|
|
|
7,
|
|
|
|
7,
|
|
|
|
6,
|
|
|
|
6,
|
|
|
|
5,
|
|
|
|
7,
|
|
|
|
2,
|
|
|
|
7,
|
|
|
|
3,
|
|
|
|
3,
|
|
|
|
3,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
1,
|
|
|
|
0,
|
|
|
|
5,
|
|
|
|
3,
|
|
|
|
3,
|
|
|
|
6,
|
|
|
|
7,
|
|
|
|
8,
|
|
|
|
8,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
2,
|
|
|
|
0,
|
|
|
|
2,
|
|
|
|
3,
|
|
|
|
5,
|
|
|
|
4,
|
|
|
|
2,
|
|
|
|
1,
|
|
|
|
8,
|
|
|
|
0,
|
|
|
|
9,
|
|
|
|
7,
|
|
|
|
5,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
5,
|
|
|
|
4,
|
|
|
|
5,
|
|
|
|
4,
|
|
|
|
0,
|
|
|
|
5,
|
|
|
|
9,
|
|
|
|
4,
|
|
|
|
7,
|
|
|
|
5,
|
|
|
|
2,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
3,
|
|
|
|
5,
|
|
|
|
2,
|
|
|
|
5,
|
|
|
|
8,
|
|
|
|
4,
|
|
|
|
9,
|
|
|
|
0,
|
|
|
|
7,
|
|
|
|
7,
|
|
|
|
1,
|
|
|
|
1,
|
|
|
|
6,
|
|
|
|
7,
|
|
|
|
0,
|
|
|
|
5,
|
|
|
|
5,
|
|
|
|
6,
|
|
|
|
0,
|
|
|
|
1,
|
|
|
|
3,
|
|
|
|
6,
|
|
|
|
0,
|
|
|
|
4,
|
|
|
|
8,
|
|
|
|
3,
|
|
|
|
9,
|
|
|
|
5,
|
|
|
|
8,
|
|
|
|
6,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
6,
|
|
|
|
7,
|
|
|
|
0,
|
|
|
|
6,
|
|
|
|
3,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
1,
|
|
|
|
5,
|
|
|
|
7,
|
|
|
|
2,
|
|
|
|
2,
|
|
|
|
1,
|
|
|
|
5,
|
|
|
|
5,
|
|
|
|
3,
|
|
|
|
9,
|
|
|
|
7,
|
|
|
|
5,
|
|
|
|
3,
|
|
|
|
6,
|
|
|
|
9,
|
|
|
|
7,
|
|
|
|
8,
|
|
|
|
1,
|
|
|
|
7,
|
|
|
|
9,
|
|
|
|
7,
|
|
|
|
7,
|
|
|
|
8,
|
|
|
|
4,
|
|
|
|
6,
|
|
|
|
1,
|
|
|
|
7,
|
|
|
|
4,
|
|
|
|
0,
|
|
|
|
6,
|
|
|
|
4,
|
|
|
|
9,
|
|
|
|
5,
|
|
|
|
5,
|
|
|
|
1,
|
|
|
|
4,
|
|
|
|
9,
|
|
|
|
2,
|
|
|
|
9,
|
|
|
|
0,
|
|
|
|
8,
|
|
|
|
6,
|
|
|
|
2,
|
|
|
|
5,
|
|
|
|
6,
|
|
|
|
9,
|
|
|
|
3,
|
|
|
|
2,
|
|
|
|
1,
|
|
|
|
9,
|
|
|
|
7,
|
|
|
|
8,
|
|
|
|
4,
|
|
|
|
6,
|
|
|
|
8,
|
|
|
|
6,
|
|
|
|
2,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
8,
|
|
|
|
2,
|
|
|
|
8,
|
|
|
|
3,
|
|
|
|
9,
|
|
|
|
7,
|
|
|
|
2,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
1,
|
|
|
|
3,
|
|
|
|
7,
|
|
|
|
5,
|
|
|
|
6,
|
|
|
|
5,
|
|
|
|
7,
|
|
|
|
0,
|
|
|
|
5,
|
|
|
|
6,
|
|
|
|
0,
|
|
|
|
5,
|
|
|
|
7,
|
|
|
|
4,
|
|
|
|
9,
|
|
|
|
0,
|
|
|
|
2,
|
|
|
|
6,
|
|
|
|
1,
|
|
|
|
4,
|
|
|
|
0,
|
|
|
|
7,
|
|
|
|
9,
|
|
|
|
7,
|
|
|
|
2,
|
|
|
|
9,
|
|
|
|
6,
|
|
|
|
8,
|
|
|
|
6,
|
|
|
|
5,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
1,
|
|
|
|
4,
|
|
|
|
5,
|
|
|
|
3,
|
|
|
|
5,
|
|
|
|
1,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
4,
|
|
|
|
7,
|
|
|
|
4,
|
|
|
|
8,
|
|
|
|
2,
|
|
|
|
1,
|
|
|
|
6,
|
|
|
|
6,
|
|
|
|
3,
|
|
|
|
7,
|
|
|
|
0,
|
|
|
|
4,
|
|
|
|
8,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
0,
|
|
|
|
3,
|
|
|
|
1,
|
|
|
|
9,
|
|
|
|
9,
|
|
|
|
8,
|
|
|
|
9,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
8,
|
|
|
|
8,
|
|
|
|
9,
|
|
|
|
5,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
3,
|
|
|
|
4,
|
|
|
|
5,
|
|
|
|
0,
|
|
|
|
6,
|
|
|
|
5,
|
|
|
|
8,
|
|
|
|
5,
|
|
|
|
4,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
2,
|
|
|
|
7,
|
|
|
|
5,
|
|
|
|
8,
|
|
|
|
8,
|
|
|
|
6,
|
|
|
|
6,
|
|
|
|
6,
|
|
|
|
8,
|
|
|
|
8,
|
|
|
|
1,
|
|
|
|
1,
|
|
|
|
6,
|
|
|
|
4,
|
|
|
|
2,
|
|
|
|
7,
|
|
|
|
1,
|
|
|
|
7,
|
|
|
|
1,
|
|
|
|
4,
|
|
|
|
7,
|
|
|
|
9,
|
|
|
|
9,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
2,
|
|
|
|
9,
|
|
|
|
2,
|
|
|
|
8,
|
|
|
|
2,
|
|
|
|
3,
|
|
|
|
0,
|
|
|
|
8,
|
|
|
|
6,
|
|
|
|
3,
|
|
|
|
4,
|
|
|
|
6,
|
|
|
|
5,
|
|
|
|
6,
|
|
|
|
7,
|
|
|
|
4,
|
|
|
|
8,
|
|
|
|
1,
|
|
|
|
3,
|
|
|
|
9,
|
|
|
|
1,
|
|
|
|
9,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
3,
|
|
|
|
1,
|
|
|
|
6,
|
|
|
|
2,
|
|
|
|
8,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
5,
|
|
|
|
8,
|
|
|
|
6,
|
|
|
|
1,
|
|
|
|
7,
|
|
|
|
8,
|
|
|
|
6,
|
|
|
|
6,
|
|
|
|
4,
|
|
|
|
5,
|
|
|
|
8,
|
|
|
|
3,
|
|
|
|
5,
|
|
|
|
9,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
5,
|
|
|
|
6,
|
|
|
|
6,
|
|
|
|
5,
|
|
|
|
2,
|
|
|
|
9,
|
|
|
|
4,
|
|
|
|
7,
|
|
|
|
6,
|
|
|
|
5,
|
|
|
|
4,
|
|
|
|
5,
|
|
|
|
6,
|
|
|
|
8,
|
|
|
|
2,
|
|
|
|
8,
|
|
|
|
4,
|
|
|
|
8,
|
|
|
|
9,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
8,
|
|
|
|
8,
|
|
|
|
3,
|
|
|
|
1,
|
|
|
|
4,
|
|
|
|
2,
|
|
|
|
6,
|
|
|
|
0,
|
|
|
|
7,
|
|
|
|
6,
|
|
|
|
9,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
4,
|
|
|
|
2,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
2,
|
|
|
|
1,
|
|
|
|
9,
|
|
|
|
0,
|
|
|
|
2,
|
|
|
|
2,
|
|
|
|
6,
|
|
|
|
7,
|
|
|
|
1,
|
|
|
|
0,
|
|
|
|
5,
|
|
|
|
5,
|
|
|
|
6,
|
|
|
|
2,
|
|
|
|
6,
|
|
|
|
3,
|
|
|
|
2,
|
|
|
|
1,
|
|
|
|
1,
|
|
|
|
1,
|
|
|
|
1,
|
|
|
|
1,
|
|
|
|
0,
|
|
|
|
9,
|
|
|
|
3,
|
|
|
|
7,
|
|
|
|
0,
|
|
|
|
5,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
2,
|
|
|
|
1,
|
|
|
|
7,
|
|
|
|
5,
|
|
|
|
0,
|
|
|
|
6,
|
|
|
|
9,
|
|
|
|
4,
|
|
|
|
1,
|
|
|
|
6,
|
|
|
|
5,
|
|
|
|
8,
|
|
|
|
9,
|
|
|
|
6,
|
|
|
|
0,
|
|
|
|
4,
|
|
|
|
0,
|
|
|
|
8,
|
|
|
|
0,
|
|
|
|
7,
|
|
|
|
1,
|
|
|
|
9,
|
|
|
|
8,
|
|
|
|
4,
|
|
|
|
0,
|
|
|
|
3,
|
|
|
|
8,
|
|
|
|
5,
|
|
|
|
0,
|
|
|
|
9,
|
|
|
|
6,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
5,
|
|
|
|
5,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
3,
|
|
|
|
6,
|
|
|
|
2,
|
|
|
|
9,
|
|
|
|
8,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
3,
|
|
|
|
0,
|
|
|
|
9,
|
|
|
|
8,
|
|
|
|
7,
|
|
|
|
8,
|
|
|
|
7,
|
|
|
|
9,
|
|
|
|
9,
|
|
|
|
2,
|
|
|
|
7,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
4,
|
|
|
|
2,
|
|
|
|
8,
|
|
|
|
4,
|
|
|
|
9,
|
|
|
|
0,
|
|
|
|
9,
|
|
|
|
1,
|
|
|
|
8,
|
|
|
|
8,
|
|
|
|
8,
|
|
|
|
4,
|
|
|
|
5,
|
|
|
|
8,
|
|
|
|
0,
|
|
|
|
1,
|
|
|
|
5,
|
|
|
|
6,
|
|
|
|
1,
|
|
|
|
6,
|
|
|
|
6,
|
|
|
|
0,
|
|
|
|
9,
|
|
|
|
7,
|
|
|
|
9,
|
|
|
|
1,
|
|
|
|
9,
|
|
|
|
1,
|
|
|
|
3,
|
|
|
|
3,
|
|
|
|
8,
|
|
|
|
7,
|
|
|
|
5,
|
|
|
|
4,
|
|
|
|
9,
|
|
|
|
9,
|
|
|
|
2,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
5,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
0,
|
|
|
|
6,
|
|
|
|
3,
|
|
|
|
6,
|
|
|
|
8,
|
|
|
|
9,
|
|
|
|
9,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
5,
|
|
|
|
6,
|
|
|
|
0,
|
|
|
|
7,
|
|
|
|
1,
|
|
|
|
7,
|
|
|
|
6,
|
|
|
|
0,
|
|
|
|
6,
|
|
|
|
0,
|
|
|
|
5,
|
|
|
|
8,
|
|
|
|
8,
|
|
|
|
6,
|
|
|
|
1,
|
|
|
|
1,
|
|
|
|
6,
|
|
|
|
4,
|
|
|
|
6,
|
|
|
|
7,
|
|
|
|
1,
|
|
|
|
0,
|
|
|
|
9,
|
|
|
|
4,
|
|
|
|
0,
|
|
|
|
5,
|
|
|
|
0,
|
|
|
|
7,
|
|
|
|
7,
|
|
|
|
5,
|
|
|
|
4,
|
|
|
|
1,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
2,
|
|
|
|
2,
|
|
|
|
5,
|
|
|
|
6,
|
|
|
|
9,
|
|
|
|
8,
|
|
|
|
3,
|
|
|
|
1,
|
|
|
|
5,
|
|
|
|
5,
|
|
|
|
2,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
5,
|
|
|
|
5,
|
|
|
|
9,
|
|
|
|
3,
|
|
|
|
5,
|
|
|
|
7,
|
|
|
|
2,
|
|
|
|
9,
|
|
|
|
7,
|
|
|
|
2,
|
|
|
|
5,
|
|
|
|
7,
|
|
|
|
1,
|
|
|
|
6,
|
|
|
|
3,
|
|
|
|
6,
|
|
|
|
2,
|
|
|
|
6,
|
|
|
|
9,
|
|
|
|
5,
|
|
|
|
6,
|
|
|
|
1,
|
|
|
|
8,
|
|
|
|
8,
|
|
|
|
2,
|
|
|
|
6,
|
|
|
|
7,
|
|
|
|
0,
|
|
|
|
4,
|
|
|
|
2,
|
|
|
|
8,
|
|
|
|
2,
|
|
|
|
5,
|
|
|
|
2,
|
|
|
|
4,
|
|
|
|
8,
|
|
|
|
3,
|
|
|
|
6,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
8,
|
|
|
|
2,
|
|
|
|
3,
|
|
|
|
2,
|
|
|
|
5,
|
|
|
|
7,
|
|
|
|
5,
|
|
|
|
3,
|
|
|
|
0,
|
|
|
|
4,
|
|
|
|
2,
|
|
|
|
0,
|
|
|
|
7,
|
|
|
|
5,
|
|
|
|
2,
|
|
|
|
9,
|
|
|
|
6,
|
|
|
|
3,
|
|
|
|
4,
|
|
|
|
5,
|
|
|
|
0
|
|
|
|
];
|
|
|
|
|
2018-10-20 23:12:13 +05:30
|
|
|
let len = n;
|
2019-07-24 00:59:27 -07:00
|
|
|
let prod = 1,
|
|
|
|
max = 1;
|
|
|
|
while (len < thousandDigits.length) {
|
2018-10-20 23:12:13 +05:30
|
|
|
prod = 1;
|
2019-07-24 00:59:27 -07:00
|
|
|
|
2018-10-20 23:12:13 +05:30
|
|
|
//Looping and computing products of n numbers
|
2019-07-24 00:59:27 -07:00
|
|
|
for (let i = len - n; i < len; i++) {
|
|
|
|
prod *= thousandDigits[i];
|
2018-10-20 23:12:13 +05:30
|
|
|
}
|
|
|
|
if (prod > max) max = prod;
|
|
|
|
len++;
|
|
|
|
}
|
|
|
|
return max;
|
|
|
|
}
|
2018-10-04 14:47:55 +01:00
|
|
|
|
2018-10-20 23:12:13 +05:30
|
|
|
console.log(largestProductinaSeries(13));
|
|
|
|
```
|
|
|
|
|
2019-07-24 00:59:27 -07:00
|
|
|
#### Relevant Links
|
2018-10-20 23:12:13 +05:30
|
|
|
|
|
|
|
- [Sliding Window Technique](https://www.geeksforgeeks.org/window-sliding-technique/)
|
2019-07-24 00:59:27 -07:00
|
|
|
|
|
|
|
</details>
|