56 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			56 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | |||
|  | id: 5900f4fc1000cf542c51000e | |||
|  | challengeType: 5 | |||
|  | title: 'Problem 399: Squarefree Fibonacci Numbers' | |||
|  | videoUrl: '' | |||
|  | localeTitle: 问题399:无自由斐波纳契数 | |||
|  | --- | |||
|  | 
 | |||
|  | ## Description
 | |||
|  | <section id="description">前15个斐波纳契数是:1,1,2,3,5,8,13,21,34,55,89,144,233,377,610。可以看出8和144不是无方形的:8可以被4整除,144可以被4和9整除。所以前13个无方形的斐波纳契数是:1,1,2,3,5,13,21, 34,55,89,233,377和610。 <p>第200平方免费斐波那契数是:971183874599339129547649988289594072811608739584170445。该数字的最后16位数字是:1608739584170445,并且在科学记数法中,该数字可以写为9.7e53。 </p><p>找到第100 000个squarefree fibonacci数。给出你的答案,它的最后十六位数后跟一个逗号,后跟科学记数法的数字(四舍五入到小数点后的一位数)。对于第200平方免费数字,答案应该是:1608739584170445,9.7e53 </p><p>注意:对于这个问题,假设对于每个素数p,可被p整除的第一个斐波纳契数不能被p2整除(这是沃尔猜想的一部分)。这已被证实适用于≤3·1015的质数,但一般尚未得到证实。 </p><p>如果猜测是假的,那么这个问题的接受答案不能保证是第1万个无平方的斐波纳契数,而只是它代表了该数的下限。 </p></section> | |||
|  | 
 | |||
|  | ## Instructions
 | |||
|  | <section id="instructions"> | |||
|  | </section> | |||
|  | 
 | |||
|  | ## Tests
 | |||
|  | <section id='tests'> | |||
|  | 
 | |||
|  | ```yml | |||
|  | tests: | |||
|  |   - text: '<code>euler399()</code>应返回1508395636674243,6.5e27330467。' | |||
|  |     testString: 'assert.strictEqual(euler399(), 1508395636674243, 6.5e27330467, "<code>euler399()</code> should return 1508395636674243, 6.5e27330467.");' | |||
|  | 
 | |||
|  | ``` | |||
|  | 
 | |||
|  | </section> | |||
|  | 
 | |||
|  | ## Challenge Seed
 | |||
|  | <section id='challengeSeed'> | |||
|  | 
 | |||
|  | <div id='js-seed'> | |||
|  | 
 | |||
|  | ```js | |||
|  | function euler399() { | |||
|  |   // Good luck! | |||
|  |   return true; | |||
|  | } | |||
|  | 
 | |||
|  | euler399(); | |||
|  | 
 | |||
|  | ``` | |||
|  | 
 | |||
|  | </div> | |||
|  | 
 | |||
|  | 
 | |||
|  | 
 | |||
|  | </section> | |||
|  | 
 | |||
|  | ## Solution
 | |||
|  | <section id='solution'> | |||
|  | 
 | |||
|  | ```js | |||
|  | // solution required | |||
|  | ``` | |||
|  | </section> |