258 lines
7.6 KiB
Markdown
Raw Normal View History

---
title: Closest-pair problem
id: 5951a53863c8a34f02bf1bdc
challengeType: 5
---
## Description
<section id='description'>
Task:
<p>Provide a function to find the closest two points among a set of given points in two dimensions, i.e. to solve the <a href="https://en.wikipedia.org/wiki/Closest pair of points problem" title="wp: Closest pair of points problem">Closest pair of points problem</a> in the planar case.</p><p>The straightforward solution is a O(n<sup>2</sup>) algorithm (which we can call brute-force algorithm); the pseudo-code (using indexes) could be simply:</p>
<pre>
bruteForceClosestPair of P(1), P(2), ... P(N)
if N &lt; 2 then
return ∞
else
minDistance ← |P(1) - P(2)|
minPoints ← { P(1), P(2) }
foreach i ∈ [1, N-1]
foreach j ∈ [i+1, N]
if |P(i) - P(j)| < minDistance then
minDistance ← |P(i) - P(j)|
minPoints ← { P(i), P(j) }
endif
endfor
endfor
return minDistance, minPoints
endif
</pre>
<p>A better algorithm is based on the recursive divide&amp;conquer approach, as explained also at <a href="https://en.wikipedia.org/wiki/Closest pair of points problem#Planar_case" title="wp: Closest pair of points problem#Planar_case">Wikipedia's Closest pair of points problem</a>, which is O(n log n); a pseudo-code could be:</p>
<pre>
closestPair of (xP, yP)
where xP is P(1) .. P(N) sorted by x coordinate, and
yP is P(1) .. P(N) sorted by y coordinate (ascending order)
if N ≤ 3 then
return closest points of xP using brute-force algorithm
else
xL ← points of xP from 1 to ⌈N/2⌉
xR ← points of xP from ⌈N/2⌉+1 to N
xm ← xP(⌈N/2⌉)<sub>x</sub>
yL ← { p ∈ yP : p<sub>x</sub> ≤ xm }
yR ← { p ∈ yP : p<sub>x</sub> &gt; xm }
(dL, pairL) ← closestPair of (xL, yL)
(dR, pairR) ← closestPair of (xR, yR)
(dmin, pairMin) ← (dR, pairR)
if dL &lt; dR then
(dmin, pairMin) ← (dL, pairL)
endif
yS ← { p ∈ yP : |xm - p<sub>x</sub>| &lt; dmin }
nS ← number of points in yS
(closest, closestPair) ← (dmin, pairMin)
for i from 1 to nS - 1
k ← i + 1
while k ≤ nS and yS(k)<sub>y</sub> - yS(i)<sub>y</sub> &lt; dmin
if |yS(k) - yS(i)| &lt; closest then
(closest, closestPair) ← (|yS(k) - yS(i)|, {yS(k), yS(i)})
endif
k ← k + 1
endwhile
endfor
return closest, closestPair
endif
</pre>
References and further readings:
<a href="https://en.wikipedia.org/wiki/Closest pair of points problem" title="wp: Closest pair of points problem">Closest pair of points problem</a>
<a href="http://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairDQ.html" title="link: http://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairDQ.html">Closest Pair (McGill)</a>
<a href="http://www.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf" title="link: http://www.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf">Closest Pair (UCSB)</a>
<a href="http://classes.cec.wustl.edu/~cse241/handouts/closestpair.pdf" title="link: http://classes.cec.wustl.edu/~cse241/handouts/closestpair.pdf">Closest pair (WUStL)</a>
<a href="http://www.cs.iupui.edu/~xkzou/teaching/CS580/Divide-and-conquer-closestPair.ppt" title="link: http://www.cs.iupui.edu/~xkzou/teaching/CS580/Divide-and-conquer-closestPair.ppt">Closest pair (IUPUI)</a>
<p>For the input, expect the argument to be an array of objects (points) with <code>x</code> and <code>y</code> members set to numbers. For the output, return an object containing the key:value pairs for <code>distance</code> and <code>pair</code> (i.e., the pair of two closest points).</p>
</section>
## Instructions
<section id='instructions'>
</section>
## Tests
<section id='tests'>
```yml
tests:
- text: <code>getClosestPair</code> is a function.
testString: 'assert(typeof getClosestPair === "function", "<code>getClosestPair</code> is a function.");'
- text: Distance should be the following.
testString: 'assert.equal(getClosestPair(points1).distance, answer1.distance, "Distance should be the following.");'
- text: Points should be the following.
testString: 'assert.deepEqual(JSON.parse(JSON.stringify(getClosestPair(points1))).pair, answer1.pair, "Points should be the following.");'
- text: Distance should be the following.
testString: 'assert.equal(getClosestPair(points2).distance, answer2.distance, "Distance should be the following.");'
- text: Points should be the following.
testString: 'assert.deepEqual(JSON.parse(JSON.stringify(getClosestPair(points2))).pair, answer2.pair, "Points should be the following.");'
```
</section>
## Challenge Seed
<section id='challengeSeed'>
<div id='js-seed'>
```js
const Point = function (x, y) {
this.x = x;
this.y = y;
};
Point.prototype.getX = function () {
return this.x;
};
Point.prototype.getY = function () {
return this.y;
};
function getClosestPair (pointsArr) {
// Good luck!
return true;
}
```
</div>
### After Test
<div id='js-teardown'>
```js
console.info('after the test');
```
</div>
</section>
## Solution
<section id='solution'>
```js
const Point = function (x, y) {
this.x = x;
this.y = y;
};
Point.prototype.getX = function () {
return this.x;
};
Point.prototype.getY = function () {
return this.y;
};
const mergeSort = function mergeSort(points, comp) {
if(points.length < 2) return points;
var n = points.length,
i = 0,
j = 0,
leftN = Math.floor(n / 2),
rightN = leftN;
var leftPart = mergeSort( points.slice(0, leftN), comp),
rightPart = mergeSort( points.slice(rightN), comp );
var sortedPart = [];
while((i < leftPart.length) && (j < rightPart.length)) {
if(comp(leftPart[i], rightPart[j]) < 0) {
sortedPart.push(leftPart[i]);
i += 1;
}
else {
sortedPart.push(rightPart[j]);
j += 1;
}
}
while(i < leftPart.length) {
sortedPart.push(leftPart[i]);
i += 1;
}
while(j < rightPart.length) {
sortedPart.push(rightPart[j]);
j += 1;
}
return sortedPart;
};
const closestPair = function _closestPair(Px, Py) {
if(Px.length < 2) return { distance: Infinity, pair: [ new Point(0, 0), new Point(0, 0) ] };
if(Px.length < 3) {
//find euclid distance
var d = Math.sqrt( Math.pow(Math.abs(Px[1].x - Px[0].x), 2) + Math.pow(Math.abs(Px[1].y - Px[0].y), 2) );
return {
distance: d,
pair: [ Px[0], Px[1] ]
};
}
var n = Px.length,
leftN = Math.floor(n / 2),
rightN = leftN;
var Xl = Px.slice(0, leftN),
Xr = Px.slice(rightN),
Xm = Xl[leftN - 1],
Yl = [],
Yr = [];
//separate Py
for(var i = 0; i < Py.length; i += 1) {
if(Py[i].x <= Xm.x)
Yl.push(Py[i]);
else
Yr.push(Py[i]);
}
var dLeft = _closestPair(Xl, Yl),
dRight = _closestPair(Xr, Yr);
var minDelta = dLeft.distance,
closestPair = dLeft.pair;
if(dLeft.distance > dRight.distance) {
minDelta = dRight.distance;
closestPair = dRight.pair;
}
//filter points around Xm within delta (minDelta)
var closeY = [];
for(i = 0; i < Py.length; i += 1) {
if(Math.abs(Py[i].x - Xm.x) < minDelta) closeY.push(Py[i]);
}
//find min within delta. 8 steps max
for(i = 0; i < closeY.length; i += 1) {
for(var j = i + 1; j < Math.min( (i + 8), closeY.length ); j += 1) {
var d = Math.sqrt( Math.pow(Math.abs(closeY[j].x - closeY[i].x), 2) + Math.pow(Math.abs(closeY[j].y - closeY[i].y), 2) );
if(d < minDelta) {
minDelta = d;
closestPair = [ closeY[i], closeY[j] ]
}
}
}
return {
distance: minDelta,
pair: closestPair
};
};
function getClosestPair (points) {
const sortX = function (a, b) { return (a.x < b.x) ? -1 : ((a.x > b.x) ? 1 : 0); }
const sortY = function (a, b) { return (a.y < b.y) ? -1 : ((a.y > b.y) ? 1 : 0); }
const Px = mergeSort(points, sortX);
const Py = mergeSort(points, sortY);
return closestPair(Px, Py);
}
```
</section>