2018-09-30 23:01:58 +01:00
---
id: 5900f43c1000cf542c50ff4e
title: 'Problem 207: Integer partition equations'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 301848
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
For some positive integers k, there exists an integer partition of the form 4t = 2t + k,
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
where 4t, 2t, and k are all positive integers and t is a real number.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
The first two such partitions are 41 = 21 + 2 and 41.5849625... = 21.5849625... + 6.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
Partitions where t is also an integer are called perfect. For any m ≥ 1 let P(m) be the proportion of such partitions that are perfect with k ≤ m. Thus P(6) = 1/2.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
In the following table are listed some values of P(m) P(5) = 1/1 P(10) = 1/2 P(15) = 2/3 P(20) = 1/2 P(25) = 1/2 P(30) = 2/5 ... P(180) = 1/4 P(185) = 3/13
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
Find the smallest m for which P(m) < 1/12345
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
`euler207()` should return 44043947822.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
assert.strictEqual(euler207(), 44043947822);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
function euler207() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
euler207();
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```