2018-09-30 23:01:58 +01:00
---
id: 5900f3f51000cf542c50ff08
challengeType: 5
title: 'Problem 137: Fibonacci golden nuggets'
---
## Description
<section id='description'>
Consider the infinite polynomial series AF(x) = xF1 + x2F2 + x3F3 + ..., where Fk is the kth term in the Fibonacci sequence: 1, 1, 2, 3, 5, 8, ... ; that is, Fk = Fk− 1 + Fk− 2, F1 = 1 and F2 = 1.
For this problem we shall be interested in values of x for which AF(x) is a positive integer.
Surprisingly AF(1/2)
=
(1/2).1 + (1/2)2.1 + (1/2)3.2 + (1/2)4.3 + (1/2)5.5 + ...
=
1/2 + 1/4 + 2/8 + 3/16 + 5/32 + ...
=
2
The corresponding values of x for the first five natural numbers are shown below.
xAF(x)
√2− 11
1/22
(√13− 2)/33
(√89− 5)/84
(√34− 3)/55
We shall call AF(x) a golden nugget if x is rational, because they become increasingly rarer; for example, the 10th golden nugget is 74049690.
Find the 15th golden nugget.
</section>
## Instructions
<section id='instructions'>
</section>
## Tests
<section id='tests'>
```yml
2018-10-04 14:37:37 +01:00
tests:
- text: <code>euler137()</code> should return 1120149658760.
2018-10-20 21:02:47 +03:00
testString: assert.strictEqual(euler137(), 1120149658760, '<code>euler137()</code> should return 1120149658760.');
2018-09-30 23:01:58 +01:00
```
</section>
## Challenge Seed
<section id='challengeSeed'>
<div id='js-seed'>
```js
function euler137() {
// Good luck!
return true;
}
euler137();
```
</div>
</section>
## Solution
<section id='solution'>
```js
// solution required
```
</section>