2020-04-21 11:19:42 -04:00
|
|
|
---
|
|
|
|
id: 5e8f2f13c4cdbe86b5c72d9e
|
2020-04-24 05:52:42 -05:00
|
|
|
title: 'Natural Language Processing With RNNs: Sentiment Analysis'
|
2020-04-21 11:19:42 -04:00
|
|
|
challengeType: 11
|
|
|
|
videoId: lYeLtu8Nq7c
|
|
|
|
---
|
|
|
|
|
|
|
|
## Description
|
|
|
|
<section id='description'>
|
|
|
|
</section>
|
|
|
|
|
|
|
|
## Tests
|
|
|
|
<section id='tests'>
|
|
|
|
|
|
|
|
```yml
|
|
|
|
question:
|
2020-05-28 22:40:36 +09:00
|
|
|
text: |
|
|
|
|
Fill in the blanks below to create the model for the RNN:
|
|
|
|
|
|
|
|
```py
|
|
|
|
model = __A__.keras.Sequential([
|
|
|
|
__A__.keras.layers.__B__(88584, 32),
|
|
|
|
__A__.keras.layers.__C__(32),
|
|
|
|
__A__.keras.layers.DENSE(1, activation='sigmoid')
|
|
|
|
])
|
|
|
|
```
|
|
|
|
|
2020-04-21 11:19:42 -04:00
|
|
|
answers:
|
2020-05-28 22:40:36 +09:00
|
|
|
- |
|
|
|
|
A: `tensor_flow`
|
|
|
|
|
|
|
|
B: `embedding`
|
|
|
|
|
|
|
|
C: `LSTM`
|
|
|
|
- |
|
|
|
|
A: `tf`
|
|
|
|
|
|
|
|
B: `Embedding`
|
|
|
|
|
|
|
|
C: `AlphaDropout`
|
|
|
|
- |
|
|
|
|
A: `tf`
|
|
|
|
|
|
|
|
B: `Embedding`
|
|
|
|
|
|
|
|
C: `LSTM`
|
2020-04-21 11:19:42 -04:00
|
|
|
solution: 3
|
|
|
|
```
|
|
|
|
|
|
|
|
</section>
|
|
|
|
|