2020-04-21 11:19:42 -04:00
|
|
|
---
|
|
|
|
id: 5e8f2f13c4cdbe86b5c72d95
|
2020-04-24 05:52:42 -05:00
|
|
|
title: 'Neural Networks: Creating a Model'
|
2020-04-21 11:19:42 -04:00
|
|
|
challengeType: 11
|
|
|
|
videoId: K8bz1bmOCTw
|
|
|
|
---
|
|
|
|
|
|
|
|
## Description
|
|
|
|
<section id='description'>
|
|
|
|
</section>
|
|
|
|
|
|
|
|
## Tests
|
|
|
|
<section id='tests'>
|
|
|
|
|
|
|
|
```yml
|
|
|
|
question:
|
2020-05-28 22:40:36 +09:00
|
|
|
text: |
|
|
|
|
Fill in the blanks below to build a sequential model of dense layers:
|
|
|
|
|
|
|
|
```py
|
|
|
|
model = __A__.__B__([
|
|
|
|
__A__.layers.Flatten(input_shape=(28, 28)),
|
|
|
|
__A__.layers.__C__(128, activation='relu'),
|
|
|
|
__A__.layers.__C__(10, activation='softmax')
|
|
|
|
])
|
|
|
|
```
|
|
|
|
|
2020-04-21 11:19:42 -04:00
|
|
|
answers:
|
2020-05-28 22:40:36 +09:00
|
|
|
- |
|
|
|
|
A: `keras`
|
2020-06-23 17:36:39 +05:30
|
|
|
|
2020-05-28 22:40:36 +09:00
|
|
|
B: `Sequential`
|
2020-06-23 17:36:39 +05:30
|
|
|
|
2020-05-28 22:40:36 +09:00
|
|
|
C: `Dense`
|
|
|
|
- |
|
|
|
|
A: `tf`
|
2020-06-23 17:36:39 +05:30
|
|
|
|
2020-05-28 22:40:36 +09:00
|
|
|
B: `Sequential`
|
2020-06-23 17:36:39 +05:30
|
|
|
|
2020-05-28 22:40:36 +09:00
|
|
|
C: `Categorical`
|
|
|
|
- |
|
|
|
|
A: `keras`
|
2020-06-23 17:36:39 +05:30
|
|
|
|
2020-05-28 22:40:36 +09:00
|
|
|
B: `sequential`
|
2020-06-23 17:36:39 +05:30
|
|
|
|
2020-05-28 22:40:36 +09:00
|
|
|
C: `dense`
|
|
|
|
solution: 1
|
2020-04-21 11:19:42 -04:00
|
|
|
```
|
|
|
|
|
|
|
|
</section>
|
|
|
|
|