56 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			56 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | |||
|  | id: 5900f3e61000cf542c50fef9 | |||
|  | challengeType: 5 | |||
|  | title: 'Problem 122: Efficient exponentiation' | |||
|  | videoUrl: '' | |||
|  | localeTitle: 问题122:有效取幂 | |||
|  | --- | |||
|  | 
 | |||
|  | ## Description
 | |||
|  | <section id="description">最简单的计算n15的方法需要十四次乘法:n×n×...×n = n15但是使用“二进制”方法可以在六次乘法中计算它:n×n = n2n2×n2 = n4n4×n4 = n8n8 ×n4 = n12n12×n2 = n14n14×n = n15然而,只能在五次乘法中计算它:n×n = n2n2×n = n3n3×n3 = n6n6×n6 = n12n12×n3 = n15我们将定义m (k)是计算nk的最小乘法数;例如m(15)= 5.对于1≤k≤200,找到Σm(k)。 </section> | |||
|  | 
 | |||
|  | ## Instructions
 | |||
|  | <section id="instructions"> | |||
|  | </section> | |||
|  | 
 | |||
|  | ## Tests
 | |||
|  | <section id='tests'> | |||
|  | 
 | |||
|  | ```yml | |||
|  | tests: | |||
|  |   - text: <code>euler122()</code>应返回1582。 | |||
|  |     testString: 'assert.strictEqual(euler122(), 1582, "<code>euler122()</code> should return 1582.");' | |||
|  | 
 | |||
|  | ``` | |||
|  | 
 | |||
|  | </section> | |||
|  | 
 | |||
|  | ## Challenge Seed
 | |||
|  | <section id='challengeSeed'> | |||
|  | 
 | |||
|  | <div id='js-seed'> | |||
|  | 
 | |||
|  | ```js | |||
|  | function euler122() { | |||
|  |   // Good luck! | |||
|  |   return true; | |||
|  | } | |||
|  | 
 | |||
|  | euler122(); | |||
|  | 
 | |||
|  | ``` | |||
|  | 
 | |||
|  | </div> | |||
|  | 
 | |||
|  | 
 | |||
|  | 
 | |||
|  | </section> | |||
|  | 
 | |||
|  | ## Solution
 | |||
|  | <section id='solution'> | |||
|  | 
 | |||
|  | ```js | |||
|  | // solution required | |||
|  | ``` | |||
|  | </section> |