63 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			63 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								id: 5e8f2f13c4cdbe86b5c72da1
							 | 
						||
| 
								 | 
							
								title: 'Natural Language Processing With RNNs: Building the Model'
							 | 
						||
| 
								 | 
							
								challengeType: 11
							 | 
						||
| 
								 | 
							
								videoId: 32WBFS7lfsw
							 | 
						||
| 
								 | 
							
								dashedName: natural-language-processing-with-rnns-building-the-model
							 | 
						||
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# --question--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								## --text--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Fill in the blanks below to complete the `build_model` function:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								```py
							 | 
						||
| 
								 | 
							
								def build_mode(vocab_size, embedding_dim, rnn_units, batch_size):
							 | 
						||
| 
								 | 
							
								    model = tf.keras.Sequential([
							 | 
						||
| 
								 | 
							
								        tf.keras.layers.Embedding(vocab_size,
							 | 
						||
| 
								 | 
							
								                                  embedding_dim,
							 | 
						||
| 
								 | 
							
								                                  batch_input_shape=[batch_size, None]),
							 | 
						||
| 
								 | 
							
								        tf.keras.layers.__A__(rnn_units,
							 | 
						||
| 
								 | 
							
								                              return_sequences=__B__,
							 | 
						||
| 
								 | 
							
								                              recurrent_initializer='glorot_uniform),
							 | 
						||
| 
								 | 
							
								        tf.keras.layers.Dense(__C__)
							 | 
						||
| 
								 | 
							
								    ])
							 | 
						||
| 
								 | 
							
								    __D__
							 | 
						||
| 
								 | 
							
								```
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								## --answers--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								A: `ELU`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								B: `True`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								C: `vocab_size`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								D: `return model`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								A: `LSTM`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								B: `False`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								C: `batch_size`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								D: `return model`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								A: `LSTM`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								B: `True`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								C: `vocab_size`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								D: `return model`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								## --video-solution--
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								3
							 | 
						||
| 
								 | 
							
								
							 |