56 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			56 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | |||
|  | id: 5900f3e61000cf542c50fef9 | |||
|  | challengeType: 5 | |||
|  | title: 'Problem 122: Efficient exponentiation' | |||
|  | videoUrl: '' | |||
|  | localeTitle: 'Задача 122: Эффективное возведение в степень' | |||
|  | --- | |||
|  | 
 | |||
|  | ## Description
 | |||
|  | <section id="description"> Самый наивный способ вычисления n15 требует четырнадцати умножений: n × n × ... × n = n15 Но используя «двоичный» метод, вы можете вычислить его в шести умножениях: n × n = n2n2 × n2 = n4n4 × n4 = n8n8 × n4 = n12n12 × n2 = n14n14 × n = n15 Однако еще можно вычислить его только в пяти умножениях: n × n = n2n2 × n = n3n3 × n3 = n6n6 × n6 = n12n12 × n3 = n15 Определим m (k) - минимальное количество умножений для вычисления nk; например m (15) = 5. Для 1 ≤ k ≤ 200 найдите Σ m (k). </section> | |||
|  | 
 | |||
|  | ## Instructions
 | |||
|  | <section id="instructions"> | |||
|  | </section> | |||
|  | 
 | |||
|  | ## Tests
 | |||
|  | <section id='tests'> | |||
|  | 
 | |||
|  | ```yml | |||
|  | tests: | |||
|  |   - text: <code>euler122()</code> должен вернуть 1582. | |||
|  |     testString: 'assert.strictEqual(euler122(), 1582, "<code>euler122()</code> should return 1582.");' | |||
|  | 
 | |||
|  | ``` | |||
|  | 
 | |||
|  | </section> | |||
|  | 
 | |||
|  | ## Challenge Seed
 | |||
|  | <section id='challengeSeed'> | |||
|  | 
 | |||
|  | <div id='js-seed'> | |||
|  | 
 | |||
|  | ```js | |||
|  | function euler122() { | |||
|  |   // Good luck! | |||
|  |   return true; | |||
|  | } | |||
|  | 
 | |||
|  | euler122(); | |||
|  | 
 | |||
|  | ``` | |||
|  | 
 | |||
|  | </div> | |||
|  | 
 | |||
|  | 
 | |||
|  | 
 | |||
|  | </section> | |||
|  | 
 | |||
|  | ## Solution
 | |||
|  | <section id='solution'> | |||
|  | 
 | |||
|  | ```js | |||
|  | // solution required | |||
|  | ``` | |||
|  | </section> |