2018-09-30 23:01:58 +01:00
---
id: 5900f4cf1000cf542c50ffe1
2018-10-20 21:02:47 +03:00
title: 'Problem 354: Distances in a bee''s honeycomb'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 302014
2021-01-13 03:31:00 +01:00
dashedName: problem-354-distances-in-a-bees-honeycomb
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
Consider a honey bee's honeycomb where each cell is a perfect regular hexagon with side length 1.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
One particular cell is occupied by the queen bee. For a positive real number L, let B(L) count the cells with distance L from the queen bee cell (all distances are measured from centre to centre); you may assume that the honeycomb is large enough to accommodate for any distance we wish to consider. For example, B(√3) = 6, B(√21) = 12 and B(111 111 111) = 54.
2018-09-30 23:01:58 +01:00
Find the number of L ≤ 5·1011 such that B(L) = 450.
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
`euler354()` should return 58065134.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
assert.strictEqual(euler354(), 58065134);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
function euler354() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
euler354();
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```