53 lines
1.2 KiB
Markdown
53 lines
1.2 KiB
Markdown
![]() |
---
|
||
|
id: 5900f5411000cf542c510054
|
||
|
title: 'Problem 468: Smooth divisors of binomial coefficients'
|
||
|
challengeType: 5
|
||
|
forumTopicId: 302143
|
||
|
dashedName: problem-468-smooth-divisors-of-binomial-coefficients
|
||
|
---
|
||
|
|
||
|
# --description--
|
||
|
|
||
|
An integer is called B-smooth if none of its prime factors is greater than $B$.
|
||
|
|
||
|
Let $SB(n)$ be the largest B-smooth divisor of $n$.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
$$\begin{align} & S_1(10) = 1 \\\\ & S_4(2\\,100) = 12 \\\\ & S_{17}(2\\,496\\,144) = 5\\,712 \end{align}$$
|
||
|
|
||
|
Define $F(n) = \displaystyle\sum_{B = 1}^n \sum_{r = 0}^n S_B(\displaystyle\binom{n}{r})$. Here, $\displaystyle\binom{n}{r}$ denotes the binomial coefficient.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
$$\begin{align} & F(11) = 3132 \\\\ & F(1\\,111)\bmod 1\\,000\\,000\\,993 = 706\\,036\\,312 \\\\ & F(111\\,111)\bmod 1\\,000\\,000\\,993 = 22\\,156\\,169 \end{align}$$
|
||
|
|
||
|
Find $F(11\\,111\\,111)\bmod 1\\,000\\,000\\,993$.
|
||
|
|
||
|
# --hints--
|
||
|
|
||
|
`smoothDivisorsOfBinomialCoefficients()` should return `852950321`.
|
||
|
|
||
|
```js
|
||
|
assert.strictEqual(smoothDivisorsOfBinomialCoefficients(), 852950321);
|
||
|
```
|
||
|
|
||
|
# --seed--
|
||
|
|
||
|
## --seed-contents--
|
||
|
|
||
|
```js
|
||
|
function smoothDivisorsOfBinomialCoefficients() {
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
smoothDivisorsOfBinomialCoefficients();
|
||
|
```
|
||
|
|
||
|
# --solutions--
|
||
|
|
||
|
```js
|
||
|
// solution required
|
||
|
```
|