65 lines
1.4 KiB
Markdown
65 lines
1.4 KiB
Markdown
![]() |
---
|
||
|
id: 5
|
||
|
localeTitle: 5900f4201000cf542c50ff33
|
||
|
challengeType: 5
|
||
|
title: 'Problem 180: Rational zeros of a function of three variables'
|
||
|
---
|
||
|
|
||
|
## Description
|
||
|
<section id='description'>
|
||
|
Para cualquier entero n, considere las tres funciones
|
||
|
f1, n (x, y, z) = xn + 1 + yn + 1 - zn + 1f2, n (x, y, z) = (xy + yz + zx) * (xn-1 + yn-1 - zn-1) f3, n (x, y, z) = xyz * (xn-2 + yn-2 - zn-2)
|
||
|
y su combinación
|
||
|
fn (x, y , z) = f1, n (x, y, z) + f2, n (x, y, z) - f3, n (x, y, z)
|
||
|
Llamamos (x, y, z) un triple dorado de orden k si x, y, y z son todos números racionales de la forma a / b con
|
||
|
0 <a <b ≤ k y hay (al menos) un entero n, de modo que fn (x, y, z) = 0.
|
||
|
Sea s (x, y, z) = x + y + z.
|
||
|
Sea t = u / v la suma de todos los s distintos (x, y, z) para todos los triples dorados (x, y, z) de orden 35. Todos los s (x, y, z) yt deben ser En forma reducida.
|
||
|
Encuentra u + v.
|
||
|
</section>
|
||
|
|
||
|
## Instructions
|
||
|
<section id='instructions'>
|
||
|
|
||
|
</section>
|
||
|
|
||
|
## Tests
|
||
|
<section id='tests'>
|
||
|
|
||
|
```yml
|
||
|
tests:
|
||
|
- text: <code>euler180()</code> debe devolver 285196020571078980.
|
||
|
testString: 'assert.strictEqual(euler180(), 285196020571078980, "<code>euler180()</code> should return 285196020571078980.");'
|
||
|
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
## Challenge Seed
|
||
|
<section id='challengeSeed'>
|
||
|
|
||
|
<div id='js-seed'>
|
||
|
|
||
|
```js
|
||
|
function euler180() {
|
||
|
// Good luck!
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
euler180();
|
||
|
```
|
||
|
|
||
|
</div>
|
||
|
|
||
|
|
||
|
|
||
|
</section>
|
||
|
|
||
|
## Solution
|
||
|
<section id='solution'>
|
||
|
|
||
|
```js
|
||
|
// solution required
|
||
|
```
|
||
|
</section>
|