<p> Escribe una función para generar secuencias numéricas de Fibonacci n-step y secuencias de Lucas. El primer parámetro será n. El segundo parámetro será el número de elementos a devolver. El tercer parámetro especificará si se debe generar la secuencia de Fibonacci o la secuencia de Lucas. Si el parámetro es "f", devuelva la secuencia de Fibonacci y si es "l", devuelva la secuencia de Lucas. Las secuencias deben devolverse como una matriz. Se dan más detalles a continuación : </p><p> Estas series de números son una expansión de la <ahref="http://rosettacode.org/wiki/Fibonacci sequence"title="secuencia Fibonacci">secuencia de Fibonacci</a> ordinaria donde: </p>
Para $ n = 2 $ tenemos la secuencia de Fibonacci; con los valores iniciales $ [1, 1] $ y $ F_k ^ 2 = F_ {k-1} ^ 2 + F_ {k-2} ^ 2 $
Para $ n = 3 $ tenemos la secuencia tribonacci; con valores iniciales $ [1, 1, 2] $ y $ F_k ^ 3 = F_ {k-1} ^ 3 + F_ {k-2} ^ 3 + F_ {k-3} ^ 3 $
Para $ n = 4 $ tenemos la secuencia tetranacci; con valores iniciales $ [1, 1, 2, 4] $ y $ F_k ^ 4 = F_ {k-1} ^ 4 + F_ {k-2} ^ 4 + F_ {k-3} ^ 4 + F_ {k -4} ^ 4 $ ...
Para general $ n> 2 $ tenemos la secuencia de pasos de Fibonacci $ n $ - $ F_k ^ n $; con valores iniciales de los primeros $ n $ valores de $ (n-1) $ 'th Fibonacci $ n $ -step secuencia $ F_k ^ {n-1} $; y el valor $ k $ 'th de esta secuencia $ n <sectionid='description'>
<p>Write a function to generate Fibonacci n-step number sequences and Lucas sequences. The first parameter will be n. The second parameter will be the number of elements to be returned. The third parameter will specify whether to output the Fibonacci sequence or the Lucas sequence. If the parameter is "f" then return the Fibonacci sequence and if it is "l", then return the Lucas sequence. The sequences must be returned as an array. More details are given below : </p><p>These number series are an expansion of the ordinary <ahref="http://rosettacode.org/wiki/Fibonacci sequence"title="Fibonacci sequence">Fibonacci sequence</a> where:</p>
For $n = 2$ we have the Fibonacci sequence; with initial values $[1, 1]$ and $F_k^2 = F_{k-1}^2 + F_{k-2}^2$
For $n = 3$ we have the tribonacci sequence; with initial values $[1, 1, 2]$ and $F_k^3 = F_{k-1}^3 + F_{k-2}^3 + F_{k-3}^3$
For $n = 4$ we have the tetranacci sequence; with initial values $[1, 1, 2, 4]$ and $F_k^4 = F_{k-1}^4 + F_{k-2}^4 + F_{k-3}^4 + F_{k-4}^4$...
For general $n>2$ we have the Fibonacci $n$-step sequence - $F_k^n$; with initial values of the first $n$ values of the $(n-1)$'th Fibonacci $n$-step sequence $F_k^{n-1}$; and $k$'th value of this $n$'th sequence being $F_k^n = \sum_{i=1}^{(n)} {F_{k-i}^{(n)}}$
<p>For small values of $n$, <ahref="https://en.wikipedia.org/wiki/Number prefix#Greek_series"title="wp: Number prefix#Greek_series">Greek numeric prefixes</a> are sometimes used to individually name each series.</p><p>{| style="text-align: left;" border="4" cellpadding="2" cellspacing="2"</p>
<p>|}</p><p>Allied sequences can be generated where the initial values are changed:</p>
<p> The <ahref="https://en.wikipedia.org/wiki/Lucas number"title="wp: Lucas number">Lucas series</a> sums the two preceding values like the fibonacci series for $n=2$ but uses $[2, 1]$ as its initial values.</p><p><!-- Lucas numbers, Lucas number, Lucas series [added to make searches easier.] --></p>
</section>#39; th es $ F_k ^ n = \ sum_ {i = 1} ^ {(n)} {F_ {ki} ^ {(n)}} $
<p> Para valores pequeños de $ n $, <ahref="https://en.wikipedia.org/wiki/Number prefix#Greek_series"title="wp: Número de prefijo # serie_griega">los prefijos numéricos griegos a</a> veces se usan para nombrar individualmente cada serie. </p><p> {| style = "text-align: left;" border = "4" cellpadding = "2" cellspacing = "2"</p>
<p> |} </p><p> Se pueden generar secuencias aliadas donde se cambian los valores iniciales: </p>
<p> La <ahref="https://en.wikipedia.org/wiki/Lucas number"title="wp: número de Lucas">serie de Lucas</a> suma los dos valores anteriores como la serie de fibonacci por $ n = 2 $, pero usa $ [2, 1] $ como sus valores iniciales. </p><p><!-- Lucas numbers, Lucas number, Lucas series [added to make searches easier.] --></p>
testString: 'assert.deepEqual(fib_luc(3,15,"f"),ans[1],"<code>fib_luc(3,15,"f")</code> should return <code>[1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136]</code>.");'
testString: 'assert.deepEqual(fib_luc(4,15,"f"),ans[2],"<code>fib_luc(4,15,"f")</code> should return <code>[1,1,2,4,8,15,29,56,108,208,401,773,1490,2872,5536]</code>.");'