| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | --- | 
					
						
							|  |  |  | id: 5900f4c81000cf542c50ffd9 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | title: '問題 347: 2 つの素数で割り切れる最大の整数' | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | challengeType: 5 | 
					
						
							|  |  |  | forumTopicId: 302006 | 
					
						
							|  |  |  | dashedName: problem-347-largest-integer-divisible-by-two-primes | 
					
						
							|  |  |  | --- | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # --description--
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | 素数のうち 2 と 3 の両方のみで割り切れる最大の整数 ($≤ 100$) は 96 であり、$96 = 32 \times 3 = 2^5 \times 3$ となります。 | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | 2 つの相異なる素数 $p$ と $q$ について、$p$ と $q$ の両方のみで割り切れる、$N$ 以下の最大の正の整数を $M(p, q, N)$ とします。そのような正の整数が存在しない場合は $M(p. q, N)=0$ とします。 | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | 例: $M(2, 3, 100) = 96$ | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | $M(3, 5, 100) = 75$ であり 90 ではありません。90 は 2, 3, 5 で割り切れるからです。 また、$M(2, 73, 100) = 0$ です。2 と 73 の両方で割り切れる 100 以下の正の整数が存在しないためです。 | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | 相異なる $M(p, q, N)$ の総和を $S(N)$ とします。 $S(100)=2262$ となります。 | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | $S(10\\,000\\,000)$ を求めなさい。 | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | 
 | 
					
						
							|  |  |  | # --hints--
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-22 20:38:20 +05:30
										 |  |  | `integerDivisibleByTwoPrimes()` は `11109800204052` を返す必要があります。 | 
					
						
							| 
									
										
										
										
											2022-01-21 01:00:18 +05:30
										 |  |  | 
 | 
					
						
							|  |  |  | ```js | 
					
						
							|  |  |  | assert.strictEqual(integerDivisibleByTwoPrimes(), 11109800204052); | 
					
						
							|  |  |  | ``` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # --seed--
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ## --seed-contents--
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ```js | 
					
						
							|  |  |  | function integerDivisibleByTwoPrimes() { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return true; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | integerDivisibleByTwoPrimes(); | 
					
						
							|  |  |  | ``` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # --solutions--
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ```js | 
					
						
							|  |  |  | // solution required | 
					
						
							|  |  |  | ``` |