| 
									
										
										
										
											2018-10-10 18:03:03 -04:00
										 |  |  | --- | 
					
						
							|  |  |  | id: 5900f5411000cf542c510054 | 
					
						
							| 
									
										
										
										
											2021-02-06 04:42:36 +00:00
										 |  |  | title: 'Problem 468: Smooth divisors of binomial coefficients' | 
					
						
							| 
									
										
										
										
											2018-10-10 18:03:03 -04:00
										 |  |  | challengeType: 5 | 
					
						
							| 
									
										
										
										
											2021-02-06 04:42:36 +00:00
										 |  |  | forumTopicId: 302143 | 
					
						
							| 
									
										
										
										
											2021-01-13 03:31:00 +01:00
										 |  |  | dashedName: problem-468-smooth-divisors-of-binomial-coefficients | 
					
						
							| 
									
										
										
										
											2018-10-10 18:03:03 -04:00
										 |  |  | --- | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-12-16 00:37:30 -07:00
										 |  |  | # --description--
 | 
					
						
							| 
									
										
										
										
											2018-10-10 18:03:03 -04:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-02-06 04:42:36 +00:00
										 |  |  | An integer is called B-smooth if none of its prime factors is greater than B. | 
					
						
							| 
									
										
										
										
											2018-10-10 18:03:03 -04:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-02-06 04:42:36 +00:00
										 |  |  | Let SB(n) be the largest B-smooth divisor of n. Examples: S1(10) = 1 S4(2100) = 12 S17(2496144) = 5712 | 
					
						
							| 
									
										
										
										
											2018-10-10 18:03:03 -04:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-02-06 04:42:36 +00:00
										 |  |  | Define F(n) = ∑1≤B≤n ∑0≤r≤n SB(C(n,r)). Here, C(n,r) denotes the binomial coefficient. Examples: F(11) = 3132 F(1 111) mod 1 000 000 993 = 706036312 F(111 111) mod 1 000 000 993 = 22156169 | 
					
						
							| 
									
										
										
										
											2018-10-10 18:03:03 -04:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-02-06 04:42:36 +00:00
										 |  |  | Find F(11 111 111) mod 1 000 000 993. | 
					
						
							| 
									
										
										
										
											2018-10-10 18:03:03 -04:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-12-16 00:37:30 -07:00
										 |  |  | # --hints--
 | 
					
						
							| 
									
										
										
										
											2018-10-10 18:03:03 -04:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-02-06 04:42:36 +00:00
										 |  |  | `euler468()` should return 852950321. | 
					
						
							| 
									
										
										
										
											2018-10-10 18:03:03 -04:00
										 |  |  | 
 | 
					
						
							|  |  |  | ```js | 
					
						
							| 
									
										
										
										
											2020-12-16 00:37:30 -07:00
										 |  |  | assert.strictEqual(euler468(), 852950321); | 
					
						
							| 
									
										
										
										
											2018-10-10 18:03:03 -04:00
										 |  |  | ``` | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-01-13 03:31:00 +01:00
										 |  |  | # --seed--
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ## --seed-contents--
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ```js | 
					
						
							|  |  |  | function euler468() { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return true; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | euler468(); | 
					
						
							|  |  |  | ``` | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-12-16 00:37:30 -07:00
										 |  |  | # --solutions--
 | 
					
						
							| 
									
										
										
										
											2020-08-13 17:24:35 +02:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-01-13 03:31:00 +01:00
										 |  |  | ```js | 
					
						
							|  |  |  | // solution required | 
					
						
							|  |  |  | ``` |