45 lines
		
	
	
		
			846 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			45 lines
		
	
	
		
			846 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f3db1000cf542c50feed | ||
|  | title: 'Problem 110: Diophantine Reciprocals II' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 301735 | ||
|  | dashedName: problem-110-diophantine-reciprocals-ii | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | In the following equation x, y, and n are positive integers. | ||
|  | 
 | ||
|  | 1/`x` + 1/`y` = 1/`n` | ||
|  | 
 | ||
|  | It can be verified that when `n` = 1260 there are 113 distinct solutions and this is the least value of `n` for which the total number of distinct solutions exceeds one hundred. | ||
|  | 
 | ||
|  | What is the least value of `n` for which the number of distinct solutions exceeds four million? | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `diophantineTwo()` should return 9350130049860600. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(diophantineTwo(), 9350130049860600); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function diophantineTwo() { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | diophantineTwo(); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | // solution required | ||
|  | ``` |