45 lines
		
	
	
		
			875 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			45 lines
		
	
	
		
			875 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
|   | --- | ||
|  | id: 5900f4c11000cf542c50ffd3 | ||
|  | title: 'Problem 341: Golomb''s self-describing sequence' | ||
|  | challengeType: 5 | ||
|  | forumTopicId: 302000 | ||
|  | dashedName: problem-341-golombs-self-describing-sequence | ||
|  | --- | ||
|  | 
 | ||
|  | # --description--
 | ||
|  | 
 | ||
|  | The Golomb's self-describing sequence {G(n)} is the only nondecreasing sequence of natural numbers such that n appears exactly G(n) times in the sequence. The values of G(n) for the first few n are | ||
|  | 
 | ||
|  | n123456789101112131415…G(n)122334445556666… | ||
|  | 
 | ||
|  | You are given that G(103) = 86, G(106) = 6137. You are also given that ΣG(n3) = 153506976 for 1 ≤ n < 103. | ||
|  | 
 | ||
|  | Find ΣG(n3) for 1 ≤ n < 106. | ||
|  | 
 | ||
|  | # --hints--
 | ||
|  | 
 | ||
|  | `euler341()` should return 56098610614277016. | ||
|  | 
 | ||
|  | ```js | ||
|  | assert.strictEqual(euler341(), 56098610614277016); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --seed--
 | ||
|  | 
 | ||
|  | ## --seed-contents--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | function euler341() { | ||
|  | 
 | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | euler341(); | ||
|  | ``` | ||
|  | 
 | ||
|  | # --solutions--
 | ||
|  | 
 | ||
|  | ```js | ||
|  | // solution required | ||
|  | ``` |