47 lines
1.4 KiB
Markdown
47 lines
1.4 KiB
Markdown
![]() |
---
|
||
|
id: 5900f46e1000cf542c50ff80
|
||
|
title: 'Problem 257: Angular Bisectors'
|
||
|
challengeType: 5
|
||
|
forumTopicId: 301905
|
||
|
dashedName: problem-257-angular-bisectors
|
||
|
---
|
||
|
|
||
|
# --description--
|
||
|
|
||
|
Given is an integer sided triangle $ABC$ with sides $a ≤ b ≤ c$. ($AB = c$, $BC = a$ and $AC = b$).
|
||
|
|
||
|
The angular bisectors of the triangle intersect the sides at points $E$, $F$ and $G$ (see picture below).
|
||
|
|
||
|
<img class="img-responsive center-block" alt="triangle ABC, with angular bisectors intersecting sides at the points E, F and G" src="https://cdn.freecodecamp.org/curriculum/project-euler/angular-bisectors.gif" style="background-color: white; padding: 10px;" />
|
||
|
|
||
|
The segments $EF$, $EG$ and $FG$ partition the triangle $ABC$ into four smaller triangles: $AEG$, $BFE$, $CGF$ and $EFG$. It can be proven that for each of these four triangles the ratio $\frac{\text{area}(ABC)}{\text{area}(\text{subtriangle})}$ is rational. However, there exist triangles for which some or all of these ratios are integral.
|
||
|
|
||
|
How many triangles $ABC$ with perimeter $≤ 100\\,000\\,000$ exist so that the ratio $\frac{\text{area}(ABC)}{\text{area}(AEG)}$ is integral?
|
||
|
|
||
|
# --hints--
|
||
|
|
||
|
`angularBisectors()` should return `139012411`.
|
||
|
|
||
|
```js
|
||
|
assert.strictEqual(angularBisectors(), 139012411);
|
||
|
```
|
||
|
|
||
|
# --seed--
|
||
|
|
||
|
## --seed-contents--
|
||
|
|
||
|
```js
|
||
|
function angularBisectors() {
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
angularBisectors();
|
||
|
```
|
||
|
|
||
|
# --solutions--
|
||
|
|
||
|
```js
|
||
|
// solution required
|
||
|
```
|