49 lines
976 B
Markdown
49 lines
976 B
Markdown
![]() |
---
|
||
|
id: 5900f48d1000cf542c50ff9f
|
||
|
title: 'Problem 288: An enormous factorial'
|
||
|
challengeType: 5
|
||
|
forumTopicId: 301939
|
||
|
dashedName: problem-288-an-enormous-factorial
|
||
|
---
|
||
|
|
||
|
# --description--
|
||
|
|
||
|
For any prime $p$ the number $N(p,q)$ is defined by $N(p,q) = \sum_{n=0}^q T_n \times p^n$ with $T_n$ generated by the following random number generator:
|
||
|
|
||
|
$$\begin{align} & S_0 = 290797 \\\\ & S_{n + 1} = {S_n}^2\bmod 50\\,515\\,093 \\\\ & T_n = S_n\bmod p \end{align}$$
|
||
|
|
||
|
Let $Nfac(p,q)$ be the factorial of $N(p,q)$.
|
||
|
|
||
|
Let $NF(p,q)$ be the number of factors $p$ in $Nfac(p,q)$.
|
||
|
|
||
|
You are given that $NF(3,10000) \bmod 3^{20} = 624\\,955\\,285$.
|
||
|
|
||
|
Find $NF(61,{10}^7)\bmod {61}^{10}$.
|
||
|
|
||
|
# --hints--
|
||
|
|
||
|
`enormousFactorial()` should return `605857431263982000`.
|
||
|
|
||
|
```js
|
||
|
assert.strictEqual(enormousFactorial(), 605857431263982000);
|
||
|
```
|
||
|
|
||
|
# --seed--
|
||
|
|
||
|
## --seed-contents--
|
||
|
|
||
|
```js
|
||
|
function enormousFactorial() {
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
enormousFactorial();
|
||
|
```
|
||
|
|
||
|
# --solutions--
|
||
|
|
||
|
```js
|
||
|
// solution required
|
||
|
```
|