53 lines
1.8 KiB
Markdown
53 lines
1.8 KiB
Markdown
![]() |
---
|
||
|
id: 5900f4ab1000cf542c50ffbd
|
||
|
title: 'Problem 318: 2011 nines'
|
||
|
challengeType: 5
|
||
|
forumTopicId: 301974
|
||
|
dashedName: problem-318-2011-nines
|
||
|
---
|
||
|
|
||
|
# --description--
|
||
|
|
||
|
Consider the real number $\sqrt{2} + \sqrt{3}$.
|
||
|
|
||
|
When we calculate the even powers of $\sqrt{2} + \sqrt{3}$ we get:
|
||
|
|
||
|
$$\begin{align} & {(\sqrt{2} + \sqrt{3})}^2 = 9.898979485566356\ldots \\\\ & {(\sqrt{2} + \sqrt{3})}^4 = 97.98979485566356\ldots \\\\ & {(\sqrt{2} + \sqrt{3})}^6 = 969.998969071069263\ldots \\\\ & {(\sqrt{2} + \sqrt{3})}^8 = 9601.99989585502907\ldots \\\\ & {(\sqrt{2} + \sqrt{3})}^{10} = 95049.999989479221\ldots \\\\ & {(\sqrt{2} + \sqrt{3})}^{12} = 940897.9999989371855\ldots \\\\ & {(\sqrt{2} + \sqrt{3})}^{14} = 9313929.99999989263\ldots \\\\ & {(\sqrt{2} + \sqrt{3})}^{16} = 92198401.99999998915\ldots \\\\ \end{align}$$
|
||
|
|
||
|
It looks like that the number of consecutive nines at the beginning of the fractional part of these powers is non-decreasing. In fact it can be proven that the fractional part of ${(\sqrt{2} + \sqrt{3})}^{2n}$ approaches 1 for large $n$.
|
||
|
|
||
|
Consider all real numbers of the form $\sqrt{p} + \sqrt{q}$ with $p$ and $q$ positive integers and $p < q$, such that the fractional part of ${(\sqrt{p} + \sqrt{q})}^{2n}$ approaches 1 for large $n$.
|
||
|
|
||
|
Let $C(p,q,n)$ be the number of consecutive nines at the beginning of the fractional part of ${(\sqrt{p} + \sqrt{q})}^{2n}$.
|
||
|
|
||
|
Let $N(p,q)$ be the minimal value of $n$ such that $C(p,q,n) ≥ 2011$.
|
||
|
|
||
|
Find $\sum N(p,q)$ for $p + q ≤ 2011$.
|
||
|
|
||
|
# --hints--
|
||
|
|
||
|
`twoThousandElevenNines()` should return `709313889`.
|
||
|
|
||
|
```js
|
||
|
assert.strictEqual(twoThousandElevenNines(), 709313889);
|
||
|
```
|
||
|
|
||
|
# --seed--
|
||
|
|
||
|
## --seed-contents--
|
||
|
|
||
|
```js
|
||
|
function twoThousandElevenNines() {
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
twoThousandElevenNines();
|
||
|
```
|
||
|
|
||
|
# --solutions--
|
||
|
|
||
|
```js
|
||
|
// solution required
|
||
|
```
|